/usr/include/OTB-6.4/otbRadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbRadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction_txx
#define otbRadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction_txx
#include "otbRadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction.h"
namespace otb
{
/**
* Constructor
*/
template<class TImage, class TCoordRep, class TPrecision>
RadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction<TImage, TCoordRep, TPrecision>::RadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction() :
m_CenterRadius(1), m_NeighborhoodBeginRadius(2), m_NeighborhoodEndRadius(3)
{
}
/**
* Standard "PrintSelf" method
*/
template<class TImage, class TCoordRep, class TPrecision>
void RadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction<TImage, TCoordRep, TPrecision>::PrintSelf(std::ostream& os,
itk::Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
template<class TImage, class TCoordRep, class TPrecision>
typename RadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction<TImage, TCoordRep, TPrecision>::OutputType RadiometryHomogenousWithNeighborhoodDataNodeFeatureFunction<
TImage, TCoordRep, TPrecision>::Evaluate(const DataNodeType& node) const
{
// TODO faire avce un ikk
const typename ImageLineIteratorType::PathType* path;
switch (node.GetNodeType())
{
case FEATURE_POINT:
{
itkExceptionMacro(<< "This DataNode type is not handled yet");
break;
}
case FEATURE_LINE:
{
path = node.GetLine();
break;
}
case FEATURE_POLYGON:
{
path = node.GetPolygonExteriorRing();
break;
}
default:
{
itkExceptionMacro(<< "This DataNode type is not handle yet");
break;
}
}
std::vector<std::pair<IndexType, IndexType> > splitedLineIdNeigh;
std::vector<std::pair<IndexType, IndexType> > splitedLineIdCentral;
// Split line and polygon into segment (ie. line with two vertex
VertexListConstIteratorType it1 = path->GetVertexList()->Begin();
VertexListConstIteratorType it2 = path->GetVertexList()->Begin();
VertexListConstIteratorType itStop = path->GetVertexList()->End();
++it2;
if (it2 == itStop)
{
itkExceptionMacro(<< "Invalid DataNode, must at least contain two points");
}
while (it1 != itStop && it2 != itStop)
{
IndexType id1, id2;
id1[0] = static_cast<int> (it1.Value()[0]);
id1[1] = static_cast<int> (it1.Value()[1]);
id2[0] = static_cast<int> (it2.Value()[0]);
id2[1] = static_cast<int> (it2.Value()[1]);
// Compute the direction of the current line
itk::Vector<double, 2> direction;
direction[0] = it2.Value()[0] - it1.Value()[0];
direction[1] = it2.Value()[1] - it1.Value()[1];
direction.Normalize();
// Compute the orthogonal direction of the current line
itk::Vector<double, 2> orthogonalDirection;
orthogonalDirection[0] = direction[1];
orthogonalDirection[1] = -direction[0];
splitedLineIdCentral.push_back(IndexPairType(id1, id2));
for (unsigned int j = 1; j <= m_CenterRadius; ++j)
{
IndexType shift11, shift12;
shift11[0] = id1[0] - j * orthogonalDirection[0];
shift11[1] = id1[1] - j * orthogonalDirection[1];
shift12[0] = id1[0] + j * orthogonalDirection[0];
shift12[1] = id1[1] + j * orthogonalDirection[1];
IndexType shift21, shift22;
shift21[0] = id2[0] - j * orthogonalDirection[0];
shift21[1] = id2[1] - j * orthogonalDirection[1];
shift22[0] = id2[0] + j * orthogonalDirection[0];
shift22[1] = id2[1] + j * orthogonalDirection[1];
splitedLineIdCentral.push_back(IndexPairType(shift11, shift21));
splitedLineIdCentral.push_back(IndexPairType(shift12, shift22));
}
for (unsigned int j = m_NeighborhoodBeginRadius; j <= m_NeighborhoodEndRadius; ++j)
{
IndexType shift11, shift12;
shift11[0] = id1[0] - j * orthogonalDirection[0];
shift11[1] = id1[1] - j * orthogonalDirection[1];
shift12[0] = id1[0] + j * orthogonalDirection[0];
shift12[1] = id1[1] + j * orthogonalDirection[1];
IndexType shift21, shift22;
shift21[0] = id2[0] - j * orthogonalDirection[0];
shift21[1] = id2[1] - j * orthogonalDirection[1];
shift22[0] = id2[0] + j * orthogonalDirection[0];
shift22[1] = id2[1] + j * orthogonalDirection[1];
splitedLineIdNeigh.push_back(IndexPairType(shift11, shift21));
splitedLineIdNeigh.push_back(IndexPairType(shift12, shift22));
}
++it1;
++it2;
}
// in FEATURE_POLYGON case, first point appears twice (first vertex and last vertew, thus we create a line of 1 point...)
if (node.GetNodeType() == FEATURE_POLYGON)
{
splitedLineIdCentral.pop_back();
splitedLineIdNeigh.pop_back();
splitedLineIdNeigh.pop_back();
}
double centralNbVisitedPixel = 0.;
PixelType centralRadiomAcc(this->GetInputImage()->GetNumberOfComponentsPerPixel());
centralRadiomAcc.Fill(0);
for (unsigned int i = 0; i < splitedLineIdCentral.size(); ++i)
{
LineIteratorType lineIt(this->GetInputImage(), splitedLineIdCentral[i].first, splitedLineIdCentral[i].second);
lineIt.GoToBegin();
while (!lineIt.IsAtEnd())
{
if (this->IsInsideBuffer(lineIt.GetIndex()))
{
centralRadiomAcc += this->GetInputImage()->GetPixel( lineIt.GetIndex() );
centralNbVisitedPixel += 1;
}
++lineIt;
}
}
double neighNbVisitedPixel = 0.;
PixelType neighborRadiomAcc(this->GetInputImage()->GetNumberOfComponentsPerPixel());
neighborRadiomAcc.Fill(0);
for (unsigned int i = 0; i < splitedLineIdNeigh.size(); ++i)
{
LineIteratorType lineIt(this->GetInputImage(), splitedLineIdNeigh[i].first, splitedLineIdNeigh[i].second);
lineIt.GoToBegin();
while (!lineIt.IsAtEnd())
{
if (this->IsInsideBuffer(lineIt.GetIndex()))
{
neighborRadiomAcc += this->GetInputImage()->GetPixel( lineIt.GetIndex() );
neighNbVisitedPixel += 1;
}
++lineIt;
}
}
OutputType output;
if (centralNbVisitedPixel > 0 && neighNbVisitedPixel > 0)
{
// Compute averaged radiometry in both areas
centralRadiomAcc /= centralNbVisitedPixel;
neighborRadiomAcc /= neighNbVisitedPixel;
// Compute the spectral angle between the center area and the neighbor area
SpectralAngleFunctorType spectralAngleFunctor;
double angle = spectralAngleFunctor(neighborRadiomAcc, centralRadiomAcc);
// Make sure we are in [0, 1] interval
angle /= otb::CONST_PI;
output.push_back(static_cast<PrecisionType> (angle));
}
else
{
output.push_back(static_cast<PrecisionType> (0.));
}
// TODO: handle streaming, need to output the current state
return output;
}
} // end namespace otb
#endif
|