/usr/include/OTB-6.4/otbPeriodicSOM.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbPeriodicSOM_h
#define otbPeriodicSOM_h
#include "otbSOM.h"
namespace otb
{
/**
* \class PeriodicSOM
* \brief This class is responsible for the learning of a self organizing
* map when considered as a torus.
*
* This class extends the SOM object which implements the Self
* Organizing Map (or Kohonen map) learning.
*
* The learning process iteratively select the best-response neuron for each input vector,
* enhancing its response and the response of its neighbors with respect to a certain radius,
* computed from an initial radius, and to a certain learning factor, decreasing at each iteration.
*
* The behavior of the neighborhood is given by a functor (templated) which parameter is the current
* iteration. It returns a neighborhood of type \code SizeType \endcode.
*
* The behavior of the learning factor (hold by a beta variable) is given by an other functor
* which parameter is the current iteration. It returns a beta value of type \code double \endcode.
*
* The SOMMap produced as output can be either initialized with a constant custom value or randomly
* generated following a normal law. The seed for the random initialization can be modified.
*
* \sa SOMMap
* \sa SOMActivationBuilder
* \sa CzihoSOMLearningBehaviorFunctor
* \sa CzihoSOMNeighborhoodBehaviorFunctor
*
* \ingroup OTBSOM
*/
template <class TListSample, class TMap,
class TSOMLearningBehaviorFunctor = Functor::CzihoSOMLearningBehaviorFunctor,
class TSOMNeighborhoodBehaviorFunctor = Functor::CzihoSOMNeighborhoodBehaviorFunctor>
class ITK_EXPORT PeriodicSOM
: public SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
{
public:
/** Standard typedefs */
typedef PeriodicSOM Self;
typedef SOM<TListSample, TMap,
TSOMLearningBehaviorFunctor,
TSOMNeighborhoodBehaviorFunctor> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Creation through object factory macro */
itkNewMacro(Self);
/** Runtime information macro */
itkTypeMacro(PeriodicSOM, SOM);
typedef TListSample ListSampleType;
typedef typename ListSampleType::Pointer ListSamplePointerType;
typedef TMap MapType;
typedef typename MapType::PixelType NeuronType;
typedef typename NeuronType::ValueType ValueType;
typedef typename MapType::IndexType IndexType;
typedef typename MapType::SizeType SizeType;
typedef typename MapType::RegionType RegionType;
typedef typename MapType::Pointer MapPointerType;
protected:
/** Constructor */
PeriodicSOM() {}
/** Destructor */
~PeriodicSOM() ITK_OVERRIDE {}
/** Output information redefinition */
void GenerateOutputInformation() ITK_OVERRIDE
{
Superclass::GenerateOutputInformation ();
}
/** Output allocation redefinition */
void AllocateOutputs() ITK_OVERRIDE
{
Superclass::AllocateOutputs();
}
/** Main computation method */
void GenerateData(void) ITK_OVERRIDE
{
Superclass::GenerateData();
}
/**
* Update the output map with a new sample.
* \param sample The new sample to learn,
* \param beta The learning coefficient,
* \param radius The radius of the nieghbourhood.
*/
void UpdateMap(const NeuronType& sample, double beta, SizeType& radius) ITK_OVERRIDE;
/**
* Step one iteration.
*/
void Step(unsigned int currentIteration) ITK_OVERRIDE
{
Superclass::Step(currentIteration);
}
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE
{
Superclass::PrintSelf(os, indent);
}
private:
PeriodicSOM(const Self &); // purposely not implemented
void operator =(const Self&); // purposely not implemented
}; // end of class
} // end of namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbPeriodicSOM.txx"
#endif
#endif
|