This file is indexed.

/usr/include/OTB-6.4/otbNeuralNetworkMachineLearningModel.h is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbNeuralNetworkMachineLearningModel_h
#define otbNeuralNetworkMachineLearningModel_h

#include "otbRequiresOpenCVCheck.h"
#include "otbOpenCVUtils.h"

#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"

namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT NeuralNetworkMachineLearningModel
  : public MachineLearningModel <TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef NeuralNetworkMachineLearningModel           Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>                         Pointer;
  typedef itk::SmartPointer<const Self>                   ConstPointer;

  typedef typename Superclass::InputValueType             InputValueType;
  typedef typename Superclass::InputSampleType            InputSampleType;
  typedef typename Superclass::InputListSampleType        InputListSampleType;
  typedef typename Superclass::TargetValueType            TargetValueType;
  typedef typename Superclass::TargetSampleType           TargetSampleType;
  typedef typename Superclass::TargetListSampleType       TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType        ConfidenceValueType;

  typedef std::map<TargetValueType, unsigned int>         MapOfLabelsType;

  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(NeuralNetworkMachineLearningModel, MachineLearningModel);

  /** Setters/Getters to the train method
   *  2 methods are available:
   *   - CvANN_MLP_TrainParams::BACKPROP The back-propagation algorithm.
   *   - CvANN_MLP_TrainParams::RPROP The RPROP algorithm.
   *  Default is CvANN_MLP_TrainParams::RPROP.
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(TrainMethod, int);
  itkSetMacro(TrainMethod, int);

  /**
   * Set the number of neurons in each layer (including input and output layers).
   * The number of neuron in the first layer (input layer) must be equal
   * to the number of samples in the \c InputListSample
   */
  void SetLayerSizes (const std::vector<unsigned int> layers);


  /** Setters/Getters to the neuron activation function
   *  3 methods are available:
   *   - CvANN_MLP::IDENTITY
   *   - CvANN_MLP::SIGMOID_SYM
   *   - CvANN_MLP::GAUSSIAN
   *  Default is CvANN_MLP::SIGMOID_SYM
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(ActivateFunction, int);
  itkSetMacro(ActivateFunction, int);

  /** Setters/Getters to the alpha parameter of the activation function
   *  Default is 0.
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(Alpha, double);
  itkSetMacro(Alpha, double);

  /** Setters/Getters to the beta parameter of the activation function
   *  Default is 0.
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(Beta, double);
  itkSetMacro(Beta, double);

  /** Strength of the weight gradient term in the BACKPROP method.
   *  The recommended value is about 0.1
   *  Default is 0.1
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(BackPropDWScale, double);
  itkSetMacro(BackPropDWScale, double);

  /** Strength of the momentum term (the difference between weights on the 2 previous iterations).
   *  This parameter provides some inertia to smooth the random fluctuations of the weights.
   *  It can vary from 0 (the feature is disabled) to 1 and beyond.
   *  The value 0.1 or so is good enough
   *  Default is 0.1
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(BackPropMomentScale, double);
  itkSetMacro(BackPropMomentScale, double);

  /** Initial value \f$ \Delta_0 \f$ of update-values \f$ \Delta_{ij} \f$ in RPROP method.
   *  Default is 0.1
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(RegPropDW0, double);
  itkSetMacro(RegPropDW0, double);

  /** Update-values lower limit \f$ \Delta_{min} \f$ in RPROP method.
   * It must be positive. Default is FLT_EPSILON
   *  \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(RegPropDWMin, double);
  itkSetMacro(RegPropDWMin, double);

  /** Termination criteria.
   * It can be CV_TERMCRIT_ITER or CV_TERMCRIT_EPS or CV_TERMCRIT_ITER+CV_TERMCRIT_EPS
   * default is CV_TERMCRIT_ITER+CV_TERMCRIT_EPS.
   * \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(TermCriteriaType, int);
  itkSetMacro(TermCriteriaType, int);

  /** Maximum number of iteration used in the Termination criteria.
   * default is 1000
   * \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(MaxIter, int);
  itkSetMacro(MaxIter, int);

  /** Epsilon value used in the Termination criteria.
   * default is 0.01
   * \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
   */
  itkGetMacro(Epsilon, double);
  itkSetMacro(Epsilon, double);

  /** Train the machine learning model */
  void Train() ITK_OVERRIDE;

  /** Save the model to file */
  void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /** Load the model from file */
  void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  bool CanReadFile(const std::string &) ITK_OVERRIDE;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  bool CanWriteFile(const std::string &) ITK_OVERRIDE;
  //@}

protected:
  /** Constructor */
  NeuralNetworkMachineLearningModel();

  /** Destructor */
  ~NeuralNetworkMachineLearningModel() ITK_OVERRIDE;

  /** Predict values using the model */
  TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;
  
  void LabelsToMat(const TargetListSampleType * listSample, cv::Mat & output);

  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  NeuralNetworkMachineLearningModel(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  void CreateNetwork();
  void SetupNetworkAndTrain(cv::Mat& labels);
#ifdef OTB_OPENCV_3
  cv::Ptr<cv::ml::ANN_MLP> m_ANNModel;
#else
  CvANN_MLP_TrainParams SetNetworkParameters();
  CvANN_MLP * m_ANNModel;
#endif
  int m_TrainMethod;
  int m_ActivateFunction;
  std::vector<unsigned int> m_LayerSizes;
  double m_Alpha;
  double m_Beta;
  double m_BackPropDWScale;
  double m_BackPropMomentScale;
  double m_RegPropDW0;
  double m_RegPropDWMin;
  int m_TermCriteriaType;
  int m_MaxIter;
  double m_Epsilon;

  CvMat*             m_CvMatOfLabels;
  MapOfLabelsType    m_MapOfLabels;

};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbNeuralNetworkMachineLearningModel.txx"
#endif

#endif