/usr/include/OTB-6.4/otbNeuralNetworkMachineLearningModel.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbNeuralNetworkMachineLearningModel_h
#define otbNeuralNetworkMachineLearningModel_h
#include "otbRequiresOpenCVCheck.h"
#include "otbOpenCVUtils.h"
#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"
namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT NeuralNetworkMachineLearningModel
: public MachineLearningModel <TInputValue, TTargetValue>
{
public:
/** Standard class typedefs. */
typedef NeuralNetworkMachineLearningModel Self;
typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
typedef std::map<TargetValueType, unsigned int> MapOfLabelsType;
/** Run-time type information (and related methods). */
itkNewMacro(Self);
itkTypeMacro(NeuralNetworkMachineLearningModel, MachineLearningModel);
/** Setters/Getters to the train method
* 2 methods are available:
* - CvANN_MLP_TrainParams::BACKPROP The back-propagation algorithm.
* - CvANN_MLP_TrainParams::RPROP The RPROP algorithm.
* Default is CvANN_MLP_TrainParams::RPROP.
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(TrainMethod, int);
itkSetMacro(TrainMethod, int);
/**
* Set the number of neurons in each layer (including input and output layers).
* The number of neuron in the first layer (input layer) must be equal
* to the number of samples in the \c InputListSample
*/
void SetLayerSizes (const std::vector<unsigned int> layers);
/** Setters/Getters to the neuron activation function
* 3 methods are available:
* - CvANN_MLP::IDENTITY
* - CvANN_MLP::SIGMOID_SYM
* - CvANN_MLP::GAUSSIAN
* Default is CvANN_MLP::SIGMOID_SYM
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(ActivateFunction, int);
itkSetMacro(ActivateFunction, int);
/** Setters/Getters to the alpha parameter of the activation function
* Default is 0.
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(Alpha, double);
itkSetMacro(Alpha, double);
/** Setters/Getters to the beta parameter of the activation function
* Default is 0.
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(Beta, double);
itkSetMacro(Beta, double);
/** Strength of the weight gradient term in the BACKPROP method.
* The recommended value is about 0.1
* Default is 0.1
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(BackPropDWScale, double);
itkSetMacro(BackPropDWScale, double);
/** Strength of the momentum term (the difference between weights on the 2 previous iterations).
* This parameter provides some inertia to smooth the random fluctuations of the weights.
* It can vary from 0 (the feature is disabled) to 1 and beyond.
* The value 0.1 or so is good enough
* Default is 0.1
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(BackPropMomentScale, double);
itkSetMacro(BackPropMomentScale, double);
/** Initial value \f$ \Delta_0 \f$ of update-values \f$ \Delta_{ij} \f$ in RPROP method.
* Default is 0.1
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(RegPropDW0, double);
itkSetMacro(RegPropDW0, double);
/** Update-values lower limit \f$ \Delta_{min} \f$ in RPROP method.
* It must be positive. Default is FLT_EPSILON
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(RegPropDWMin, double);
itkSetMacro(RegPropDWMin, double);
/** Termination criteria.
* It can be CV_TERMCRIT_ITER or CV_TERMCRIT_EPS or CV_TERMCRIT_ITER+CV_TERMCRIT_EPS
* default is CV_TERMCRIT_ITER+CV_TERMCRIT_EPS.
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(TermCriteriaType, int);
itkSetMacro(TermCriteriaType, int);
/** Maximum number of iteration used in the Termination criteria.
* default is 1000
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(MaxIter, int);
itkSetMacro(MaxIter, int);
/** Epsilon value used in the Termination criteria.
* default is 0.01
* \see http://docs.opencv.org/modules/ml/doc/neural_networks.html
*/
itkGetMacro(Epsilon, double);
itkSetMacro(Epsilon, double);
/** Train the machine learning model */
void Train() ITK_OVERRIDE;
/** Save the model to file */
void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;
/** Load the model from file */
void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
bool CanReadFile(const std::string &) ITK_OVERRIDE;
/** Is the input model file writable and compatible with the corresponding classifier ? */
bool CanWriteFile(const std::string &) ITK_OVERRIDE;
//@}
protected:
/** Constructor */
NeuralNetworkMachineLearningModel();
/** Destructor */
~NeuralNetworkMachineLearningModel() ITK_OVERRIDE;
/** Predict values using the model */
TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;
void LabelsToMat(const TargetListSampleType * listSample, cv::Mat & output);
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
NeuralNetworkMachineLearningModel(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
void CreateNetwork();
void SetupNetworkAndTrain(cv::Mat& labels);
#ifdef OTB_OPENCV_3
cv::Ptr<cv::ml::ANN_MLP> m_ANNModel;
#else
CvANN_MLP_TrainParams SetNetworkParameters();
CvANN_MLP * m_ANNModel;
#endif
int m_TrainMethod;
int m_ActivateFunction;
std::vector<unsigned int> m_LayerSizes;
double m_Alpha;
double m_Beta;
double m_BackPropDWScale;
double m_BackPropMomentScale;
double m_RegPropDW0;
double m_RegPropDWMin;
int m_TermCriteriaType;
int m_MaxIter;
double m_Epsilon;
CvMat* m_CvMatOfLabels;
MapOfLabelsType m_MapOfLabels;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbNeuralNetworkMachineLearningModel.txx"
#endif
#endif
|