This file is indexed.

/usr/include/OTB-6.4/otbMachineLearningModelTraits.h is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#ifndef otbMachineLearningModelTraits_h
#define otbMachineLearningModelTraits_h


#include "itkVariableLengthVector.h"
#include "itkFixedArray.h"
#include "itkIsNumber.h"
#include "itkMetaProgrammingLibrary.h"

namespace otb
{

/**
 * This is the struct defining the sample implementation for
 * MachineLearningModel. It offers two type definitions: SampleType
 * and ValueType.
 *
 * \tparam TInput : input sample type (can be either a scalar type or
 * a VariableLengthVector
 * \tparam isNumber either TrueType or FalseType for partial
 * specialization
  
 */
template <typename TInput, typename isNumber> struct MLMSampleTraitsImpl;


/// \cond SPECIALIZATION_IMPLEMENTATION
// For Numbers
template <typename TInput> struct MLMSampleTraitsImpl<TInput, itk::mpl::TrueType> {
  typedef TInput                             ValueType;
   typedef itk::VariableLengthVector<TInput> SampleType;
};

// For Vectors
template <typename TInput> struct MLMSampleTraitsImpl<TInput, itk::mpl::FalseType> {
  typedef typename TInput::ValueType        ValueType;
  typedef TInput                            SampleType;
};
/// \endcond

/**
 * Simplified implementation of SampleTraits using MLMSampleTraitsImpl
 */
template <typename TInput> using MLMSampleTraits = MLMSampleTraitsImpl< TInput, typename itk::mpl::IsNumber<TInput>::Type >;


/**
 * This is the struct defining the sample implementation for
 * MachineLearningModel. It offers two type definitions: TargetType
 * and ValueType.
 *
 * \tparam TInput : input sample type (can be either a scalar type or
 * a VariableLengthVector or a FixedArray
 * \tparam isNumber either TrueType or FalseType for partial
 * specialization
  
 */
template <typename TInput, typename isNumber> struct MLMTargetTraitsImpl;


/// \cond SPECIALIZATION_IMPLEMENTATION
// For Numbers
template <typename TInput> struct MLMTargetTraitsImpl<TInput, itk::mpl::TrueType> {
  typedef TInput                             ValueType;
  typedef itk::FixedArray<TInput,1>          SampleType;
};

// For Vectors
template <typename TInput> struct MLMTargetTraitsImpl<TInput, itk::mpl::FalseType> {
  typedef typename TInput::ValueType        ValueType;
  typedef TInput                            SampleType;
};
/// \endcond

/**
 * Simplified implementation of TargetTraits using MLMTargetTraitsImpl
 */
template <typename TInput> using MLMTargetTraits = MLMTargetTraitsImpl< TInput, typename itk::mpl::IsNumber<TInput>::Type >;


} // End namespace otb

#endif