/usr/include/OTB-6.4/otbLibSVMMachineLearningModel.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbLibSVMMachineLearningModel_h
#define otbLibSVMMachineLearningModel_h
#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"
#include "svm.h"
namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT LibSVMMachineLearningModel
: public MachineLearningModel <TInputValue, TTargetValue>
{
public:
/** Standard class typedefs. */
typedef LibSVMMachineLearningModel Self;
typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
/** enum to choose the way confidence is computed
* CM_INDEX : compute the difference between highest and second highest probability
* CM_PROBA : returns probabilities for all classes
* The given pointer needs to store 'nbClass' values
* This mode requires that ConfidenceValueType is double
* CM_HYPER : returns hyperplanes distances*
* The given pointer needs to store 'nbClass * (nbClass-1) / 2' values
* This mode requires that ConfidenceValueType is double
*/
typedef enum {CM_INDEX,CM_PROBA,CM_HYPER} ConfidenceMode;
/** Run-time type information (and related methods). */
itkNewMacro(Self);
itkTypeMacro(SVMMachineLearningModel, MachineLearningModel);
/** Train the machine learning model */
void Train() ITK_OVERRIDE;
/** Save the model to file */
void Save(const std::string &filename, const std::string & name="") ITK_OVERRIDE;
/** Load the model from file */
void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
bool CanReadFile(const std::string &) ITK_OVERRIDE;
/** Is the input model file writable and compatible with the corresponding classifier ? */
bool CanWriteFile(const std::string &) ITK_OVERRIDE;
//@}
#define otbSetSVMParameterMacro(name, alias, type) \
void Set##name (const type _arg) \
{ \
itkDebugMacro("setting " #name " to " << _arg); \
if ( this->m_Parameters.alias != _arg ) \
{ \
this->m_Parameters.alias = _arg; \
this->Modified(); \
} \
}
/** Set the SVM type to C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR */
otbSetSVMParameterMacro(SVMType, svm_type, int)
/** Get the SVM type (C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR) */
int GetSVMType(void) const
{
return m_Parameters.svm_type;
}
/** Set the kernel type to LINEAR, POLY, RBF, SIGMOID
linear: u'*v
polynomial: (gamma*u'*v + coef0)^degree
radial basis function: exp(-gamma*|u-v|^2)
sigmoid: tanh(gamma*u'*v + coef0)*/
otbSetSVMParameterMacro(KernelType, kernel_type, int)
/** Get the kernel type */
int GetKernelType(void) const
{
return m_Parameters.kernel_type;
}
/** Set the degree of the polynomial kernel */
otbSetSVMParameterMacro(PolynomialKernelDegree,degree,int)
/** Get the degree of the polynomial kernel */
int GetPolynomialKernelDegree(void) const
{
return m_Parameters.degree;
}
/** Set the gamma parameter for poly/rbf/sigmoid kernels */
otbSetSVMParameterMacro(KernelGamma,gamma,double)
/** Get the gamma parameter for poly/rbf/sigmoid kernels */
double GetKernelGamma(void) const
{
return m_Parameters.gamma;
}
/** Set the coef0 parameter for poly/sigmoid kernels */
otbSetSVMParameterMacro(KernelCoef0,coef0,double)
/** Get the coef0 parameter for poly/sigmoid kernels */
double GetKernelCoef0(void) const
{
return m_Parameters.coef0;
}
/** Set the C parameter for the training for C_SVC, EPSILON_SVR and C_SVR */
otbSetSVMParameterMacro(C,C,double)
/** Get the C parameter for the training for C_SVC, EPSILON_SVR and NU_SVR */
double GetC(void) const
{
return m_Parameters.C;
}
itkSetMacro(ParameterOptimization, bool);
itkGetMacro(ParameterOptimization, bool);
/** Do probability estimates */
void SetDoProbabilityEstimates(bool prob)
{
m_Parameters.probability = static_cast<int>(prob);
}
/** Get Do probability estimates boolean */
bool GetDoProbabilityEstimates(void) const
{
return static_cast<bool>(m_Parameters.probability);
}
/** Test if the model has probabilities */
bool HasProbabilities(void) const;
/** Set the tolerance for the stopping criterion for the training*/
otbSetSVMParameterMacro(Epsilon,eps,double)
/** Get the tolerance for the stopping criterion for the training*/
double GetEpsilon(void) const
{
return m_Parameters.eps;
}
/** Set the value of p for EPSILON_SVR */
otbSetSVMParameterMacro(P,p,double)
/** Get the value of p for EPSILON_SVR */
double GetP(void) const
{
return m_Parameters.p;
}
/** Set the Nu parameter for the training */
otbSetSVMParameterMacro(Nu,nu,double)
/** Set the Nu parameter for the training */
double GetNu(void) const
{
return m_Parameters.nu;
}
#undef otbSetSVMParameterMacro
/** Use the shrinking heuristics for the training */
void DoShrinking(bool s)
{
m_Parameters.shrinking = static_cast<int>(s);
this->Modified();
}
/** Get Use the shrinking heuristics for the training boolea */
bool GetDoShrinking(void) const
{
return static_cast<bool>(m_Parameters.shrinking);
}
/** Set the cache size in MB for the training */
void SetCacheSize(int cSize)
{
m_Parameters.cache_size = static_cast<double>(cSize);
this->Modified();
}
/** Get the cache size in MB for the training */
int GetCacheSize(void) const
{
return static_cast<int>(m_Parameters.cache_size);
}
itkSetMacro(CVFolders, unsigned int);
itkGetMacro(CVFolders, unsigned int);
itkGetMacro(InitialCrossValidationAccuracy, double);
itkGetMacro(FinalCrossValidationAccuracy, double);
itkSetMacro(CoarseOptimizationNumberOfSteps, unsigned int);
itkGetMacro(CoarseOptimizationNumberOfSteps, unsigned int);
itkSetMacro(FineOptimizationNumberOfSteps, unsigned int);
itkGetMacro(FineOptimizationNumberOfSteps, unsigned int);
void SetConfidenceMode(unsigned int mode)
{
if (m_ConfidenceMode != static_cast<ConfidenceMode>(mode) )
{
m_ConfidenceMode = static_cast<ConfidenceMode>(mode);
this->m_ConfidenceIndex = this->HasProbabilities();
this->Modified();
}
}
itkGetMacro(ConfidenceMode, unsigned int);
unsigned int GetNumberOfKernelParameters();
double CrossValidation(void);
/** Return number of support vectors */
unsigned int GetNumberOfSupportVectors(void) const
{
if (m_Model) return m_Model->l;
return 0;
}
unsigned int GetNumberOfClasses(void) const
{
if (m_Model) return m_Model->nr_class;
return 0;
}
protected:
/** Constructor */
LibSVMMachineLearningModel();
/** Destructor */
~LibSVMMachineLearningModel() ITK_OVERRIDE;
/** Predict values using the model */
TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
LibSVMMachineLearningModel(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
void BuildProblem(void);
void ConsistencyCheck(void);
void DeleteProblem(void);
void DeleteModel(void);
void OptimizeParameters(void);
/** Container to hold the SVM model itself */
struct svm_model* m_Model;
/** Structure that stores training vectors */
struct svm_problem m_Problem;
/** Container of the SVM parameters */
struct svm_parameter m_Parameters;
/** Do parameters optimization, default : false */
bool m_ParameterOptimization;
/** Number of Cross Validation folders*/
unsigned int m_CVFolders;
/** Initial cross validation accuracy */
double m_InitialCrossValidationAccuracy;
/** Final cross validationa accuracy */
double m_FinalCrossValidationAccuracy;
/** Number of steps for the coarse search */
unsigned int m_CoarseOptimizationNumberOfSteps;
/** Number of steps for the fine search */
unsigned int m_FineOptimizationNumberOfSteps;
/** Output mode for confidence index (see enum ) */
ConfidenceMode m_ConfidenceMode;
/** Temporary array to store cross-validation results */
std::vector<double> m_TmpTarget;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbLibSVMMachineLearningModel.txx"
#endif
#endif
|