This file is indexed.

/usr/include/OTB-6.4/otbKNearestNeighborsMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbKNearestNeighborsMachineLearningModel_txx
#define otbKNearestNeighborsMachineLearningModel_txx

#include <boost/lexical_cast.hpp>
#include "otbKNearestNeighborsMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include <set>
#include "itkMacro.h"

namespace otb
{

template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::KNearestNeighborsMachineLearningModel() :
#ifdef OTB_OPENCV_3
 m_KNearestModel(cv::ml::KNearest::create()),
#else
 m_KNearestModel (new CvKNearest),
#endif
 m_K(32),
 m_DecisionRule(KNN_VOTING)
{
  this->m_ConfidenceIndex = true;
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::~KNearestNeighborsMachineLearningModel()
{
#ifndef OTB_OPENCV_3
  delete m_KNearestModel;
#endif
}

/** Train the machine learning model */
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  // update decision rule if needed
  if (this->m_RegressionMode)
    {
    if (this->m_DecisionRule == KNN_VOTING)
      {
      this->SetDecisionRule(KNN_MEAN);
      }
    }
  else
    {
    if (this->m_DecisionRule != KNN_VOTING)
      {
      this->SetDecisionRule(KNN_VOTING);
      }
    }

#ifdef OTB_OPENCV_3
  m_KNearestModel->setDefaultK(m_K);
  // would be nice to expose KDTree mode ( maybe in a different classifier)
  m_KNearestModel->setAlgorithmType(cv::ml::KNearest::BRUTE_FORCE);
  m_KNearestModel->setIsClassifier(!this->m_RegressionMode);
  // setEmax() ?
  m_KNearestModel->train(cv::ml::TrainData::create(
    samples,
    cv::ml::ROW_SAMPLE,
    labels));
#else
  //train the KNN model
  m_KNearestModel->train(samples, labels, cv::Mat(), this->m_RegressionMode, m_K, false);
#endif
}

template <class TInputValue, class TTargetValue>
typename KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::TargetSampleType
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  TargetSampleType target;

  //convert listsample to Mat
  cv::Mat sample;
  otb::SampleToMat<InputSampleType>(input, sample);

  float result;
  cv::Mat nearest(1,m_K,CV_32FC1);
#ifdef OTB_OPENCV_3
  result = m_KNearestModel->findNearest(sample, m_K, cv::noArray(), nearest, cv::noArray());
#else
  result = m_KNearestModel->find_nearest(sample, m_K,ITK_NULLPTR,ITK_NULLPTR,&nearest,ITK_NULLPTR);
#endif
  // compute quality if asked (only happens in classification mode)
  if (quality != ITK_NULLPTR)
    {
    assert(!this->m_RegressionMode);
    unsigned int accuracy = 0;
    for (int k=0 ; k < m_K ; ++k)
      {
      if (nearest.at<float>(0,k) == result)
        {
        accuracy++;
        }
      }
    (*quality) = static_cast<ConfidenceValueType>(accuracy);
    }

  // Decision rule :
  //  VOTING is OpenCV default behaviour for classification
  //  MEAN is OpenCV default behaviour for regression
  //  MEDIAN : only case that must be handled here
  if (this->m_DecisionRule == KNN_MEDIAN)
    {
    std::multiset<float> values;
    for (int k=0 ; k < m_K ; ++k)
      {
      values.insert(nearest.at<float>(0,k));
      }
    std::multiset<float>::iterator median = values.begin();
    int pos = (m_K >> 1);
    for (int k=0 ; k < pos ; ++k , ++median) {}
    result = *median;
    }

  target[0] = static_cast<TTargetValue>(result);
  return target;
}

template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Save(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_KNearestModel->getDefaultName() : cv::String(name)) << "{";
  m_KNearestModel->write(fs);
  fs << "DecisionRule" << m_DecisionRule;
  fs << "}";
  fs.release();
#else
  (void) name;
  //there is no m_KNearestModel->save(filename.c_str(), name.c_str()).
  //We need to save the K parameter, IsRegression flag, DecisionRule and the samples.

  std::ofstream ofs(filename.c_str());
  //Save K parameter and IsRegression flag.
  ofs << "K=" << m_K << "\n";
  ofs << "IsRegression=" << this->m_RegressionMode << "\n";
  // Save the DecisionRule if regression
  if (this->m_RegressionMode)
    {
    ofs << "DecisionRule=" << m_DecisionRule << "\n";
    }

  //Save the samples. First column is the Label and other columns are the sample data.
  typename InputListSampleType::ConstIterator sampleIt = this->GetInputListSample()->Begin();
  typename TargetListSampleType::ConstIterator labelIt = this->GetTargetListSample()->Begin();
  const unsigned int sampleSize = this->GetInputListSample()->GetMeasurementVectorSize();
  for(; sampleIt!=this->GetInputListSample()->End(); ++sampleIt,++labelIt)
  {
    // Retrieve sample
    typename InputListSampleType::MeasurementVectorType sample = sampleIt.GetMeasurementVector();
    ofs <<labelIt.GetMeasurementVector()[0];

    // Loop on sample size
    for(unsigned int i = 0; i < sampleSize; ++i)
    {
      ofs << " " << sample[i];
    }
    ofs <<"\n";
  }
  ofs.close();
#endif
}

template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Load(const std::string & filename, const std::string & itkNotUsed(name))
{
  std::ifstream ifs(filename.c_str());
  if(!ifs)
  {
    itkExceptionMacro(<<"Could not read file "<<filename);
  }
#ifdef OTB_OPENCV_3
  // try to load with the 3.x syntax
  bool isKNNv3 = false;
  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);
    if (line.find(m_KNearestModel->getDefaultName()) != std::string::npos)
    {
      isKNNv3 = true;
      break;
    }
  }
  ifs.close();
  if (isKNNv3)
    {
    cv::FileStorage fs(filename, cv::FileStorage::READ);
    m_KNearestModel->read(fs.getFirstTopLevelNode());
    m_DecisionRule = (int)(fs.getFirstTopLevelNode()["DecisionRule"]);
    return;
    }
  ifs.open(filename.c_str());
#endif
  //there is no m_KNearestModel->load(filename.c_str(), name.c_str());
  
  //first line is the K parameter of this algorithm.
  std::string line;
  std::getline(ifs, line);
  std::istringstream iss(line);
  if( line.find( "K" ) == std::string::npos )
    {
    itkExceptionMacro( <<"Could not read file "<<filename );
    }
  std::string::size_type pos = line.find_first_of("=", 0);
  std::string::size_type nextpos = line.find_first_of(" \n\r", pos+1);
  this->SetK(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));

  //second line is the IsRegression parameter
  std::getline(ifs, line);
  if( line.find( "IsRegression" ) == std::string::npos )
    {
    itkExceptionMacro( <<"Could not read file "<<filename );
    }
  pos = line.find_first_of("=", 0);
  nextpos = line.find_first_of(" \n\r", pos+1);
  this->SetRegressionMode(boost::lexical_cast<bool>(line.substr(pos+1, nextpos-pos-1)));
  //third line is the DecisionRule parameter (only for regression)
  if (this->m_RegressionMode)
    {
    std::getline(ifs, line);
    pos = line.find_first_of("=", 0);
    nextpos = line.find_first_of(" \n\r", pos+1);
    this->SetDecisionRule(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));
    }
  //Clear previous listSample (if any)
  typename InputListSampleType::Pointer samples = InputListSampleType::New();
  typename TargetListSampleType::Pointer labels = TargetListSampleType::New();

  //Read a txt file. First column is the label, other columns are the sample data.
  unsigned int nbFeatures = 0;
  while (!ifs.eof())
  {
    std::getline(ifs, line);

    if(nbFeatures == 0)
      {
        nbFeatures = std::count(line.begin(),line.end(),' ');
      }

    if(line.size()>1)
    {
      // Parse label
      pos = line.find_first_of(" ", 0);
      TargetSampleType label;
      label[0] = static_cast<TargetValueType>(boost::lexical_cast<unsigned int>(line.substr(0, pos)));
      // Parse sample features
      InputSampleType sample(nbFeatures);
      sample.Fill(0);
      unsigned int id = 0;
      nextpos = line.find_first_of(" ", pos+1);
      while(nextpos != std::string::npos)
      {
        nextpos = line.find_first_of(" \n\r", pos+1);
        std::string subline = line.substr(pos+1, nextpos-pos-1);
        //sample[id] = static_cast<InputValueType>(boost::lexical_cast<float>(subline));
        sample[id] = atof(subline.c_str());
        pos = nextpos;
        id++;
      }
      samples->SetMeasurementVectorSize(itk::NumericTraits<InputSampleType>::GetLength(sample));
      samples->PushBack(sample);
      labels->PushBack(label);
    }
  }
  ifs.close();

  this->SetInputListSample(samples);
  this->SetTargetListSample(labels);
  this->Train();
}

template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanReadFile(const std::string & file)
{
  try
  {
    this->Load(file);
  }
  catch(...)
  {
    return false;
  }
  return true;
}

template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}


template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif