This file is indexed.

/usr/include/OTB-6.4/otbHistogramStatisticsFunction.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#ifndef otbHistogramStatisticsFunction_txx
#define otbHistogramStatisticsFunction_txx

#include "otbHistogramStatisticsFunction.h"

namespace otb
{

template<class TInputHistogram, class TOutput>
HistogramStatisticsFunction<TInputHistogram, TOutput>
::HistogramStatisticsFunction()
{
  m_IsModified = true;
}

template<class TInputHistogram, class TOutput>
typename HistogramStatisticsFunction<TInputHistogram, TOutput>::OutputType
HistogramStatisticsFunction<TInputHistogram, TOutput>
::GetEntropy()
{
  if (m_IsModified == true)
    {
    this->Update();
    }
  return m_entropy;
}

template<class TInputHistogram, class TOutput>
typename HistogramStatisticsFunction<TInputHistogram, TOutput>::OutputType
HistogramStatisticsFunction<TInputHistogram, TOutput>
::GetMean()
{
  if (m_IsModified == true)
    {
    this->Update();
    }
  return m_mean;
}

template<class TInputHistogram, class TOutput>
typename HistogramStatisticsFunction<TInputHistogram, TOutput>::OutputType
HistogramStatisticsFunction<TInputHistogram, TOutput>
::GetCovariance()
{
  if (m_IsModified == true)
    {
    this->Update();
    }
  return m_covariance;
}

template<class TInputHistogram, class TOutput>
void
HistogramStatisticsFunction<TInputHistogram, TOutput>
::CalculateEntropy()
{
  typename TInputHistogram::ConstPointer histogram = m_InputHistogram;

  typename TInputHistogram::ConstIterator iter = histogram->Begin();
  typename TInputHistogram::ConstIterator end = histogram->End();

  RealType      entropy = itk::NumericTraits<RealType>::Zero;
  FrequencyType globalFrequency = histogram->GetTotalFrequency();
  if (globalFrequency == 0)
    {
    itkExceptionMacro(<< "Histogram must contain at least 1 element.");
    }
  while (iter != end)
    {
    RealType Proba = static_cast<RealType>(iter.GetFrequency());
    Proba /= static_cast<RealType>(globalFrequency);
    if (Proba != 0.0)
      {
      entropy -=  Proba * vcl_log(Proba);
      }
    ++iter;
    }
  m_entropy.resize(1);
  m_entropy[0] = static_cast<TOutput>(entropy);
}

template<class TInputHistogram, class TOutput>
void
HistogramStatisticsFunction<TInputHistogram, TOutput>
::CalculateMean()
{
  typename TInputHistogram::ConstPointer histogram = m_InputHistogram;

  unsigned int NumberOfDimension =  histogram->GetSize().GetSize();
  m_mean.resize(NumberOfDimension);

  if (histogram->GetTotalFrequency() == 0)
    {
    itkExceptionMacro(<< "Histogram must contain at least 1 element.");
    }

  if (NumberOfDimension > 2)
    {
    itkExceptionMacro(<< "Histogram must have 1 or 2 dimension.");
    }

  for (unsigned int noDim = 0; noDim < NumberOfDimension; noDim++)
    {
    MeasurementType mean = itk::NumericTraits<MeasurementType>::Zero;
    for (unsigned int i = 0; i < histogram->GetSize()[noDim]; ++i)
      {
      MeasurementType val  = histogram->GetMeasurement(i, noDim);
      FrequencyType   freq = histogram->GetFrequency(i, noDim);
      mean += val * freq;
      }
    mean /=  histogram->GetTotalFrequency();
    m_mean[noDim] = static_cast<TOutput>(mean);
    }
}

template<class TInputHistogram, class TOutput>
void
HistogramStatisticsFunction<TInputHistogram, TOutput>
::CalculateCovariance()
{
  CalculateMean();

  typename TInputHistogram::ConstPointer histogram = m_InputHistogram;

  unsigned int NumberOfDimension =  histogram->GetSize().GetSize();
  m_covariance.resize(NumberOfDimension * NumberOfDimension);

  if (histogram->GetTotalFrequency() == 0)
    {
    itkExceptionMacro(<< "Histogram must contain at least 1 element.");
    }

  for (unsigned int noDimX = 0; noDimX < NumberOfDimension; noDimX++)
    for (unsigned int noDimY = 0; noDimY < NumberOfDimension; noDimY++)
      {
      MeasurementType covariance = itk::NumericTraits<MeasurementType>::Zero;
      for (unsigned int i = 0; i < histogram->GetSize()[noDimX]; ++i)
        for (unsigned int j = 0; j < histogram->GetSize()[noDimY]; ++j)
          {
          MeasurementType valX  = histogram->GetMeasurement(i, noDimX);
          MeasurementType valY  = histogram->GetMeasurement(j, noDimY);
          FrequencyType   freqX = histogram->GetFrequency(i, noDimX);
          FrequencyType   freqY = histogram->GetFrequency(j, noDimY);

          valX -= static_cast<MeasurementType>(m_mean[noDimX]);
          valY -= static_cast<MeasurementType>(m_mean[noDimY]);
          covariance += ((valX * freqX) * (valY * freqY));
          }
      covariance /=  histogram->GetTotalFrequency();
      m_covariance[noDimX * NumberOfDimension + noDimY] = static_cast<TOutput>(covariance);
      }

}

template<class TInputHistogram, class TOutput>
void
HistogramStatisticsFunction<TInputHistogram, TOutput>
::GenerateData()
{

  CalculateEntropy();
  CalculateMean();
  CalculateCovariance();
  m_IsModified = false;
}

template<class TInputHistogram, class TOutput>
void
HistogramStatisticsFunction<TInputHistogram, TOutput>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif