This file is indexed.

/usr/include/OTB-6.4/otbGradientBoostedTreeMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbGradientBoostedTreeMachineLearningModel_txx
#define otbGradientBoostedTreeMachineLearningModel_txx

#include "otbGradientBoostedTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include "itkMacro.h"

#ifndef OTB_OPENCV_3
namespace otb
{

template <class TInputValue, class TOutputValue>
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::GradientBoostedTreeMachineLearningModel() :
 m_GBTreeModel (new CvGBTrees),
 m_LossFunctionType(CvGBTrees::DEVIANCE_LOSS),//m_LossFunctionType(CvGBTrees::SQUARED_LOSS),
 m_WeakCount(200),
 m_Shrinkage(0.01),
 m_SubSamplePortion(0.8),
 m_MaxDepth(3),
 m_UseSurrogates(false)
{
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TOutputValue>
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::~GradientBoostedTreeMachineLearningModel()
{
  delete m_GBTreeModel;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);

  CvGBTreesParams params = CvGBTreesParams(m_LossFunctionType, m_WeakCount, m_Shrinkage, m_SubSamplePortion,
                                           m_MaxDepth, m_UseSurrogates);

  //train the Decision Tree model
  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical

  if (!this->m_RegressionMode) //Classification
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

  m_GBTreeModel->train(samples,CV_ROW_SAMPLE,labels,cv::Mat(),cv::Mat(),var_type,cv::Mat(),params, false);
}

template <class TInputValue, class TOutputValue>
typename GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  //convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input,sample);

  double result = m_GBTreeModel->predict(sample); //, cv::Mat(), false)->value;

  TargetSampleType target;

  target[0] = static_cast<TOutputValue>(result);

  if (quality != ITK_NULLPTR)
    {
    if (!this->m_ConfidenceIndex)
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_GBTreeModel->save(filename.c_str(), ITK_NULLPTR);
  else
    m_GBTreeModel->save(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_GBTreeModel->load(filename.c_str(), ITK_NULLPTR);
  else
    m_GBTreeModel->load(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
bool
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
  {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    //if (line.find(m_SVMModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_GBT) != std::string::npos)
    {
       //std::cout<<"Reading a "<<CV_TYPE_NAME_ML_GBT<<" model"<<std::endl;
       return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif
#endif