/usr/include/OTB-6.4/otbGradientBoostedTreeMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbGradientBoostedTreeMachineLearningModel_txx
#define otbGradientBoostedTreeMachineLearningModel_txx
#include "otbGradientBoostedTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"
#include <fstream>
#include "itkMacro.h"
#ifndef OTB_OPENCV_3
namespace otb
{
template <class TInputValue, class TOutputValue>
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::GradientBoostedTreeMachineLearningModel() :
m_GBTreeModel (new CvGBTrees),
m_LossFunctionType(CvGBTrees::DEVIANCE_LOSS),//m_LossFunctionType(CvGBTrees::SQUARED_LOSS),
m_WeakCount(200),
m_Shrinkage(0.01),
m_SubSamplePortion(0.8),
m_MaxDepth(3),
m_UseSurrogates(false)
{
this->m_IsRegressionSupported = true;
}
template <class TInputValue, class TOutputValue>
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::~GradientBoostedTreeMachineLearningModel()
{
delete m_GBTreeModel;
}
/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
//convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);
CvGBTreesParams params = CvGBTreesParams(m_LossFunctionType, m_WeakCount, m_Shrinkage, m_SubSamplePortion,
m_MaxDepth, m_UseSurrogates);
//train the Decision Tree model
cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical
if (!this->m_RegressionMode) //Classification
var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;
m_GBTreeModel->train(samples,CV_ROW_SAMPLE,labels,cv::Mat(),cv::Mat(),var_type,cv::Mat(),params, false);
}
template <class TInputValue, class TOutputValue>
typename GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
//convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input,sample);
double result = m_GBTreeModel->predict(sample); //, cv::Mat(), false)->value;
TargetSampleType target;
target[0] = static_cast<TOutputValue>(result);
if (quality != ITK_NULLPTR)
{
if (!this->m_ConfidenceIndex)
{
itkExceptionMacro("Confidence index not available for this classifier !");
}
}
return target;
}
template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
if (name == "")
m_GBTreeModel->save(filename.c_str(), ITK_NULLPTR);
else
m_GBTreeModel->save(filename.c_str(), name.c_str());
}
template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
if (name == "")
m_GBTreeModel->load(filename.c_str(), ITK_NULLPTR);
else
m_GBTreeModel->load(filename.c_str(), name.c_str());
}
template <class TInputValue, class TOutputValue>
bool
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
std::ifstream ifs;
ifs.open(file.c_str());
if(!ifs)
{
std::cerr<<"Could not read file "<<file<<std::endl;
return false;
}
while (!ifs.eof())
{
std::string line;
std::getline(ifs, line);
//if (line.find(m_SVMModel->getName()) != std::string::npos)
if (line.find(CV_TYPE_NAME_ML_GBT) != std::string::npos)
{
//std::cout<<"Reading a "<<CV_TYPE_NAME_ML_GBT<<" model"<<std::endl;
return true;
}
}
ifs.close();
return false;
}
template <class TInputValue, class TOutputValue>
bool
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TOutputValue>
void
GradientBoostedTreeMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os,indent);
}
} //end namespace otb
#endif
#endif
|