/usr/include/OTB-6.4/otbConfusionMatrixCalculator.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbConfusionMatrixCalculator_h
#define otbConfusionMatrixCalculator_h
#include "otbMacro.h"
#include "otbConfusionMatrixMeasurements.h"
namespace otb
{
/** \class ConfusionMatrixCalculator
* This class computes a confusion matrix from 2 lists of labels. It
* assumes that the 2 lists have the same length and uses the
* position of the labels in the lists to build the pairs
* reference/produced labels.
*
* The rows and columns of the output confusion matrix are sorted according to increasing class labels.
*
* For a 2 classes problem, the confusion matrix is organized as follows:
* \f[ \left( \begin{array}{cc} True Positives & False Negatives \\ False Positives & True Negatives \end{array} \right) \f]
*
* Please note that when accessing the confusion matrix values, the first index is the row index (reference samples),
* and the second is the column index (produced samples), so that accessing the false positive rate is done by
* calling GetConfusionMatrix()[1, 0] for the case of a 2 classes problem.
*
* Some measurements are computed by this class:
* If we consider true positive (TP), true negative (TN), false positive (FP) and false negative (FP) rates, then in the 2 classes case:
* \f[ precision = \frac{TP}{\left( TP + FP \right) } \f]
* \f[ recall = \frac{TP}{\left( TP + FN \right) } \f]
* \f[ FScore = \frac{2 * precision * recall}{\left( precision + recall \right) } \f]
*
* In case of multiclasses problem, these measurements are extended by considering one class versus others.
*
* Moreover overall accuracy and \f[ \kappa \f] index are computed.
*
* \ingroup OTBSupervised
*/
template <class TRefListLabel, class TProdListLabel>
class ITK_EXPORT ConfusionMatrixCalculator :
public itk::Object
{
public:
/** Standard class typedefs */
typedef ConfusionMatrixCalculator Self;
typedef itk::Object Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ConfusionMatrixCalculator, itk::Object);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** List to store the corresponding labels */
typedef TRefListLabel RefListLabelType;
typedef typename RefListLabelType::Pointer RefListLabelPointerType;
typedef TProdListLabel ProdListLabelType;
typedef typename ProdListLabelType::Pointer ProdListLabelPointerType;
typedef typename RefListLabelType::ValueType::ValueType ClassLabelType;
typedef std::map<ClassLabelType, int> MapOfClassesType;
typedef std::map<int, ClassLabelType> MapOfIndicesType;
/** Type for the confusion matrix */
typedef itk::VariableSizeMatrix<unsigned long> ConfusionMatrixType;
/** Type for the confusion matrix measurements calculator*/
typedef otb::ConfusionMatrixMeasurements<ConfusionMatrixType, ClassLabelType> ConfusionMatrixMeasurementsType;
/** Type for the measurement */
typedef itk::VariableLengthVector<double> MeasurementType;
/** Computes m_ConfusionMatrix and then the measurements over it. */
void Compute(void);
/** Accessors */
itkSetObjectMacro(ReferenceLabels, RefListLabelType);
itkGetConstObjectMacro(ReferenceLabels, RefListLabelType);
itkSetObjectMacro(ProducedLabels, ProdListLabelType);
itkGetConstObjectMacro(ProducedLabels, ProdListLabelType);
itkGetMacro(TruePositiveValues, MeasurementType);
itkGetMacro(TrueNegativeValues, MeasurementType);
itkGetMacro(FalsePositiveValues, MeasurementType);
itkGetMacro(FalseNegativeValues, MeasurementType);
itkGetMacro(TruePositiveValue, double);
itkGetMacro(TrueNegativeValue, double);
itkGetMacro(FalsePositiveValue, double);
itkGetMacro(FalseNegativeValue, double);
itkGetMacro(KappaIndex, double);
itkGetMacro(OverallAccuracy, double);
itkGetMacro(Precisions, MeasurementType);
itkGetMacro(Recalls, MeasurementType);
itkGetMacro(FScores, MeasurementType);
itkGetMacro(Precision, double);
itkGetMacro(Recall, double);
itkGetMacro(FScore, double);
itkGetMacro(NumberOfClasses, unsigned short);
itkGetMacro(NumberOfSamples, unsigned long);
itkGetMacro(ConfusionMatrix, ConfusionMatrixType);
/* Gives the correspondence between a class label
* and its index in the confusion matrix
*/
MapOfClassesType GetMapOfClasses() const
{
return m_MapOfClasses;
}
/* Gives the correspondence between an index in the
* confusion matrix and the class label
*/
MapOfIndicesType GetMapOfIndices() const
{
return m_MapOfIndices;
}
protected:
ConfusionMatrixCalculator();
~ConfusionMatrixCalculator() ITK_OVERRIDE {}
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
ConfusionMatrixCalculator(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
double m_KappaIndex;
double m_OverallAccuracy;
MeasurementType m_FalseNegativeValues;
MeasurementType m_TrueNegativeValues;
MeasurementType m_FalsePositiveValues;
MeasurementType m_TruePositiveValues;
MeasurementType m_Precisions;
MeasurementType m_Recalls;
MeasurementType m_FScores;
double m_FalseNegativeValue;
double m_TrueNegativeValue;
double m_FalsePositiveValue;
double m_TruePositiveValue;
double m_Precision;
double m_Recall;
double m_FScore;
MapOfClassesType m_MapOfClasses;
MapOfIndicesType m_MapOfIndices;
unsigned short m_NumberOfClasses;
unsigned long m_NumberOfSamples;
ConfusionMatrixType m_ConfusionMatrix;
typename ConfusionMatrixMeasurementsType::Pointer m_ConfMatMeasurements;
RefListLabelPointerType m_ReferenceLabels;
ProdListLabelPointerType m_ProducedLabels;
};
} // end of namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbConfusionMatrixCalculator.txx"
#endif
#endif
|