/usr/include/osgEarth/GeoData is in libosgearth-dev 2.9.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | /* -*-c++-*- */
/* osgEarth - Dynamic map generation toolkit for OpenSceneGraph
* Copyright 2016 Pelican Mapping
* http://osgearth.org
*
* osgEarth is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#ifndef OSGEARTH_GEODATA_H
#define OSGEARTH_GEODATA_H 1
#include <osgEarth/Common>
#include <osgEarth/GeoCommon>
#include <osgEarth/Bounds>
#include <osgEarth/SpatialReference>
#include <osgEarth/Units>
#include <osgEarth/ImageUtils>
#include <osg/Referenced>
#include <osg/Image>
#include <osg/Shape>
#include <osg/Polytope>
namespace osgEarth
{
class TerrainResolver;
class GeoExtent;
/**
* A georeferenced 3D point.
*/
class OSGEARTH_EXPORT GeoPoint
{
public:
/**
* Constructs a GeoPoint.
*/
GeoPoint(
const SpatialReference* srs,
double x,
double y,
double z,
const AltitudeMode& mode );
/**
* Constructs a GeoPoint with an absolute Z.
*/
GeoPoint(
const SpatialReference* srs,
double x,
double y,
double z );
/**
* Constructs a GeoPoint with X and Y coordinates. The Z defaults
* to zero with an ALTMODE_RELATIVE altitude mode (i.e., 0 meters
* above the terrain).
*/
GeoPoint(
const SpatialReference* srs,
double x,
double y );
/**
* Constructs a GeoPoint from a vec3.
*/
GeoPoint(
const SpatialReference* srs,
const osg::Vec3d& xyz,
const AltitudeMode& mode );
/**
* Constructs a GeoPoint from a vec3 with absolute Z.
*/
GeoPoint(
const SpatialReference* srs,
const osg::Vec3d& xyz);
/**
* Constructs a new GeoPoint by transforming an existing GeoPoint into
* the specified spatial reference.
*/
GeoPoint(
const SpatialReference* srs,
const GeoPoint& rhs );
/**
* Copy constructor
*/
GeoPoint(const GeoPoint& rhs);
/**
* Constructs an empty (and invalid) geopoint.
*/
GeoPoint();
/**
* Constructs a geopoint from serialization
*/
GeoPoint( const Config& conf, const SpatialReference* srs =0L );
/** dtor */
virtual ~GeoPoint() { }
/**
* Sets the SRS and coords
*/
void set(
const SpatialReference* srs,
const osg::Vec3d& xyz,
const AltitudeMode& mode );
void set(
const SpatialReference* srs,
double x,
double y,
double z,
const AltitudeMode& mode );
// component getter/setters
double& x() { return _p.x(); }
double x() const { return _p.x(); }
double& y() { return _p.y(); }
double y() const { return _p.y(); }
double& z() { return _p.z(); }
double z() const { return _p.z(); }
double& alt() { return _p.z(); }
double alt() const { return _p.z(); }
osg::Vec3d& vec3d() { return _p; }
const osg::Vec3d& vec3d() const { return _p; }
const SpatialReference* getSRS() const { return _srs.get(); }
/**
* AltitudeMode reflects whether the Z coordinate is absolute with
* respect to MSL or relative to the terrain elevation at that
* point. When using relative points, GeoPoint usually requires
* access to a TerrainProvider in order to resolve the altitude.
*/
AltitudeMode& altitudeMode() { return _altMode; }
const AltitudeMode& altitudeMode() const { return _altMode; }
bool isRelative() const { return _altMode == ALTMODE_RELATIVE; }
bool isAbsolute() const { return _altMode == ALTMODE_ABSOLUTE; }
/**
* Returns a copy of this geopoint transformed into another SRS.
*/
GeoPoint transform(const SpatialReference* outSRS) const;
/**
* Transforms this geopoint into another SRS.
*/
bool transform(const SpatialReference* outSRS, GeoPoint& output) const;
/**
* Transforms this point in place to another SRS.
*/
bool transformInPlace(const SpatialReference* srs);
/**
* Transforms this geopoint's Z coordinate (in place)
*/
bool transformZ(const AltitudeMode& altMode, const TerrainResolver* t );
/**
* Transforms and returns the geopoints Z coordinate.
*/
bool transformZ(const AltitudeMode& altMode, const TerrainResolver* t, double& out_z) const;
/**
* Transforms this geopoint's Z to be absolute w.r.t. the vertical datum
*/
bool makeAbsolute(const TerrainResolver* t) { return transformZ(ALTMODE_ABSOLUTE, t); }
/**
* Transforms this geopoint's Z to be terrain-relative.
*/
bool makeRelative(const TerrainResolver* t) { return transformZ(ALTMODE_RELATIVE, t); }
/**
* Transforms this GeoPoint to geographic (lat/long) coords in place.
*/
bool makeGeographic();
/**
* Outputs world coordinates corresponding to this point. If the point
* is ALTMODE_RELATIVE, this will fail because there's no way to resolve
* the actual Z coordinate. Use the variant of toWorld that takes a
* Terrain* instead.
*/
bool toWorld( osg::Vec3d& out_world ) const;
/**
* Outputs world coordinates corresponding to this point, passing in a Terrain
* object that will be used if the point needs to be converted to absolute
* altitude
*/
bool toWorld( osg::Vec3d& out_world, const TerrainResolver* terrain ) const;
/**
* Converts world coordinates into a geopoint
*/
bool fromWorld(const SpatialReference* srs, const osg::Vec3d& world);
/**
* geopoint into absolute world coords.
*/
bool createLocalToWorld( osg::Matrixd& out_local2world ) const;
/**
* Outputs a matrix that will transform absolute world coordiantes so they are
* localized into a local tangent place around this geopoint.
*/
bool createWorldToLocal( osg::Matrixd& out_world2local ) const;
/**
* Outputs an "up" vector corresponding to the given point. The up vector
* is orthogonal to a local tangent plane at that point on the map.
*/
bool createWorldUpVector( osg::Vec3d& out_up ) const;
/**
* Calculates the distance in meters from this geopoint to another.
*/
double distanceTo(const GeoPoint& rhs) const;
bool operator == (const GeoPoint& rhs) const;
bool operator != (const GeoPoint& rhs) const { return !operator==(rhs); }
bool isValid() const { return _srs.valid(); }
Config getConfig() const;
/**
* Represent this point as a string
*/
std::string toString() const;
public:
static GeoPoint INVALID;
protected:
osg::ref_ptr<const SpatialReference> _srs;
osg::Vec3d _p;
AltitudeMode _altMode;
};
/**
* A simple circular bounding area consiting of a GeoPoint and a linear radius.
*/
class OSGEARTH_EXPORT GeoCircle
{
public:
/** Construct an INVALID GeoCircle */
GeoCircle();
/** Copy another GoeCircle */
GeoCircle(const GeoCircle& rhs);
/** Construct a new GeoCircle */
GeoCircle(
const GeoPoint& center,
double radius );
virtual ~GeoCircle() { }
/** The center point of the circle */
const GeoPoint& getCenter() const { return _center; }
void setCenter( const GeoPoint& value ) { _center = value; }
/** Circle's radius, in linear map units (or meters for a geographic SRS) */
double getRadius() const { return _radius; }
void setRadius( double value ) { _radius = value; }
/** SRS of the center point */
const SpatialReference* getSRS() const { return _center.getSRS(); }
/** equality test */
bool operator == ( const GeoCircle& rhs ) const;
/** inequality test */
bool operator != ( const GeoCircle& rhs ) const { return !operator==(rhs); }
/** validity test */
bool isValid() const { return _center.isValid() && _radius > 0.0; }
/** transform the GeoCircle to another SRS */
GeoCircle transform( const SpatialReference* srs ) const;
/** transform the GeoCircle to another SRS */
bool transform( const SpatialReference* srs, GeoCircle& out_circle ) const;
/** does this GeoCircle intersect another? */
bool intersects( const GeoCircle& rhs ) const;
public:
static GeoCircle INVALID;
protected:
GeoPoint _center;
double _radius;
};
/**
* An axis-aligned geospatial extent. A bounding box that is aligned with a
* spatial reference's coordinate system.
*/
class OSGEARTH_EXPORT GeoExtent
{
public:
/** Default ctor creates an "invalid" extent */
GeoExtent();
/** Contructs a valid extent */
GeoExtent(
const SpatialReference* srs,
double west, double south,
double east, double north );
/** Contructs an invalid extent that you can grow with the expandToInclude method */
GeoExtent( const SpatialReference* srs );
/** Copy ctor */
GeoExtent( const GeoExtent& rhs );
/** create from Bounds object */
GeoExtent( const SpatialReference* srs, const Bounds& bounds );
/** dtor */
virtual ~GeoExtent() { }
//! Set from the SW and NE corners.
void set(double west, double south, double east, double north);
bool operator == ( const GeoExtent& rhs ) const;
bool operator != ( const GeoExtent& rhs ) const;
/** Gets the spatial reference system underlying this extent. */
const SpatialReference* getSRS() const { return _srs.get(); }
//! Coordinates of the bounding edges, normalized for the lat/long frame if necessary
inline double west() const { return _west; }
inline double east() const { return normalizeX(_west+_width); }
inline double south() const { return _south; }
inline double north() const { return _south+_height; }
//! Coordinates of the bounds, NOT normalized to the lat/long frame.
inline double xMin() const { return _west; }
inline double xMax() const { return _west + _width; }
inline double yMin() const { return _south; }
inline double yMax() const { return _south + _height; }
//! East-to-west span of the extent
inline double width() const { return _width; }
//! North-to-south span of the extent
inline double height() const { return _height; }
/**
* Gets the centroid of the bounds
*/
bool getCentroid( double& out_x, double& out_y ) const;
osg::Vec3d getCentroid() const { osg::Vec3d r; getCentroid(r.x(), r.y()); return r; }
bool getCentroid( GeoPoint& output ) const;
//! True if the extent is geographic and crosses the 180 degree meridian.
bool crossesAntimeridian() const;
//! Raw bounds of the extent (unnormalized)
void getBounds(double& xmin, double& ymin, double& xmax, double& ymax) const;
/** True if this object defines a real, valid extent with positive area */
bool isValid() const;
bool isInvalid() const { return !isValid(); }
/**
* If this extent crosses the international date line, populates two extents, one for
* each side, and returns true. Otherwise returns false and leaves the reference
* parameters untouched.
*/
bool splitAcrossAntimeridian( GeoExtent& first, GeoExtent& second ) const;
/**
* Returns this extent transformed into another spatial reference.
*
* NOTE! It is possible that the target SRS will not be able to accomadate the
* extents of the source SRS. (For example, transforming a full WGS84 extent
* to Mercator will resultin an error since Mercator does not cover the entire
* globe.) Consider using Profile:clampAndTransformExtent() instead of using
* this method directly.
*/
GeoExtent transform( const SpatialReference* to_srs ) const;
/**
* Same as transform(srs) but puts the result in the output extent
*/
bool transform( const SpatialReference* to_srs, GeoExtent& output ) const;
/**
* Returns true if the specified point falls within the bounds of the extent.
*
* @param x, y
* Coordinates to test
* @param xy_srs
* SRS of input x and y coordinates; if null, the method assumes x and y
* are in the same SRS as this object.
*/
bool contains(double x, double y, const SpatialReference* srs =0L) const;
bool contains(const osg::Vec3d& xy, const SpatialReference* srs =0L) const { return contains(xy.x(),xy.y(),srs); }
/**
* Returns true if the point falls within this extent.
*/
bool contains( const GeoPoint& rhs ) const;
/**
* Returns true if this extent fully contains another extent.
*/
bool contains( const GeoExtent& rhs ) const;
/**
* Returns true if this extent fully contains the target bounds.
*/
bool contains( const Bounds& rhs ) const;
/**
* Returns TRUE if this extent intersects another extent.
* @param[in ] rhs Extent against which to perform intersect test
* @param[in ] checkSRS If false, assume the extents have the same SRS (don't check).
*/
bool intersects( const GeoExtent& rhs, bool checkSRS =true ) const;
/**
* Copy of the anonymous bounding box
*/
Bounds bounds() const;
/**
* Gets a geo circle bounding this extent.
*/
GeoCircle computeBoundingGeoCircle() const;
/**
* Grow this extent to include the specified point (which is assumed to be
* in the extent's SRS.
*/
void expandToInclude( double x, double y );
void expandToInclude( const osg::Vec3d& v ) { expandToInclude(v.x(), v.y()); }
void expandToInclude( const Bounds& bounds );
/**
* Expand this extent to include the bounds of another extent.
*/
bool expandToInclude( const GeoExtent& rhs );
/**
* Intersect this extent with another extent in the same SRS and return the
* result.
*/
GeoExtent intersectionSameSRS( const GeoExtent& rhs ) const; //const Bounds& rhs ) const;
/**
* Returns a human-readable string containing the extent data (without the SRS)
*/
std::string toString() const;
/**
*Inflates this GeoExtent by the given ratios
*/
void scale(double x_scale, double y_scale);
/**
* Expands the extent by x and y.
*/
void expand( double x, double y );
/**
*Gets the area of this GeoExtent
*/
double area() const;
/**
* Generate a polytope in world coordinates that bounds the extent.
* Return false if the extent it invalid.
*/
bool createPolytope(osg::Polytope& out) const;
/**
* Computes a scale/bias matrix that transforms parametric coordinates [0..1]
* from this extent into the target extent. Return false if the extents are
* incompatible (different SRS, etc.)
*
* For example, if this extent is 100m wide, and the target extent is
* 200m wide, the output matrix will have an x_scale = 0.5.
*
* Note! For the sake of efficiency, this method does NOT check for
* validity nor for SRS equivalence -- so be sure to validate those beforehand.
* It also assumes the output matrix is preset to the identity.
*/
bool createScaleBias(const GeoExtent& target, osg::Matrix& output) const;
/**
* Generates a BoundingSphere encompassing the extent and a vertical
* volume, in world coordinates.
*/
osg::BoundingSphered createWorldBoundingSphere(double minElev, double maxElev) const;
public:
static GeoExtent INVALID;
private:
osg::ref_ptr<const SpatialReference> _srs;
double _west, _width, _south, _height;
double normalizeX( double longitude ) const;
void clamp();
bool isGeographic() const;
void setOriginAndSize(double west, double south, double width, double height);
};
/**
* A geospatial area with tile data LOD extents
*/
class OSGEARTH_EXPORT DataExtent : public GeoExtent
{
public:
DataExtent(const GeoExtent& extent);
DataExtent(const GeoExtent& extent, unsigned minLevel );
DataExtent(const GeoExtent& extent, unsigned minLevel, unsigned maxLevel);
/** dtor */
virtual ~DataExtent() { }
/** The minimum LOD of the extent */
optional<unsigned>& minLevel() { return _minLevel; }
const optional<unsigned>& minLevel() const { return _minLevel; }
/** The maximum LOD of the extent */
optional<unsigned>& maxLevel() { return _maxLevel; }
const optional<unsigned>& maxLevel() const { return _maxLevel; }
private:
optional<unsigned> _minLevel;
optional<unsigned> _maxLevel;
};
typedef std::vector< DataExtent > DataExtentList;
/**
* A georeferenced image; i.e. an osg::Image and an associated GeoExtent with SRS.
*/
class OSGEARTH_EXPORT GeoImage
{
public:
/** Construct an empty (invalid) geoimage. */
GeoImage();
/**
* Constructs a new goereferenced image.
*/
GeoImage(osg::Image* image, const GeoExtent& extent);
/** dtor */
virtual ~GeoImage() { }
static GeoImage INVALID;
public:
/**
* True if this is a valid geo image.
*/
bool valid() const;
/**
* Gets a pointer to the underlying OSG image.
*/
osg::Image* getImage() const;
/**
* Gets the geospatial extent of the image.
*/
const GeoExtent& getExtent() const;
/**
* Shortcut to get the spatial reference system describing
* the projection of the image.
*/
const SpatialReference* getSRS() const;
/**
* Crops the image to a new geospatial extent.
*
* @param extent
* New extent to which to crop the image.
* @param exact
* If "exact" is true, the output image will have exactly the extents requested;
* this process may require resampling and will therefore be more expensive. If
* "exact" is false, we do a simple crop of the image that is rounded to the nearest
* pixel. The resulting extent will be close but usually not exactly what was
* requested - however, this method is faster.
* @param width, height
* New pixel size for the output image. By default, the method will automatically
* calculate a new pixel size.
*/
GeoImage crop(
const GeoExtent& extent,
bool exact = false,
unsigned int width = 0,
unsigned int height = 0,
bool useBilinearInterpolation = true) const;
/**
* Warps the image into a new spatial reference system.
*
* @param to_srs
* SRS into which to warp the image.
* @param to_extent
* Supply this extent if you wish to warp AND crop the image in one step. This is
* faster than calling reproject() and then crop().
* @param width, height
* New pixel size for the output image. Be default, the method will automatically
* calculate a new pixel size.
*/
GeoImage reproject(
const SpatialReference* to_srs,
const GeoExtent* to_extent = 0,
unsigned int width = 0,
unsigned int height = 0,
bool useBilinearInterpolation = true) const;
/**
* Adds a one-pixel transparent border around an image.
*/
GeoImage addTransparentBorder(
bool leftBorder=true,
bool rightBorder=true,
bool bottomBorder=true,
bool topBorder=true);
/**
* Sets alpha to Zero for any pixels that do NOT intersect the masking extent.
*/
void applyAlphaMask(const GeoExtent& maskingExtent);
/**
* Returns the underlying OSG image and releases the reference pointer.
*/
osg::Image* takeImage();
/**
* Gets the units per pixel of this geoimage
*/
double getUnitsPerPixel() const;
private:
osg::ref_ptr<osg::Image> _image;
GeoExtent _extent;
};
typedef std::vector<GeoImage> GeoImageVector;
class OSGEARTH_EXPORT NormalMap : public osg::Image
{
public:
NormalMap(unsigned s, unsigned t);
void set(unsigned s, unsigned t, const osg::Vec3& normal, float curvature =0.0f);
osg::Vec3 getNormal(unsigned s, unsigned t) const;
osg::Vec3 getNormalByUV(double u, double v) const;
float getCurvature(unsigned s, unsigned t) const;
virtual ~NormalMap();
private:
ImageUtils::PixelWriter* _write;
ImageUtils::PixelReader* _read;
};
/**
* A georeferenced heightfield and associated normal/curvature map.
*/
class OSGEARTH_EXPORT GeoHeightField
{
public:
/** Constructs an empty (invalid) heightfield. */
GeoHeightField();
/**
* Constructs a new georeferenced heightfield.
*/
GeoHeightField(
osg::HeightField* heightField,
const GeoExtent& extent );
//! Constructs a new GeoHeightField
//! @param[in] heightField Elevation grid
//! @param[in] normalMap Normal/Curvature map
//! @param[in] extent Geospatial extent of the data
GeoHeightField(
osg::HeightField* heightField,
NormalMap* normalMap,
const GeoExtent& extent);
/** dtor */
virtual ~GeoHeightField() { }
static GeoHeightField INVALID;
/**
* True if this is a valid heightfield.
*/
bool valid() const;
/**
* Gets the elevation value at a specified point.
*
* @param srs
* Spatial reference of the query coordinates. (If you pass in NULL, the method
* will assume that the SRS is equivalent to that of the GeoHeightField. Be sure
* this is case of you will get incorrect results.)
* @param x, y
* Coordinates at which to query the elevation value.
* @param interp
* Interpolation method for the elevation query.
* @param srsWithOutputVerticalDatum
* Transform the output elevation value according to the vertical datum
* associated with this SRS. If the SRS is NULL, assume a geodetic vertical datum
* relative to this object's reference ellipsoid.
* @param out_elevation
* Output: the elevation value
* @return
* True if the elevation query was succesful; false if not (e.g. if the query
* fell outside the geospatial extent of the heightfield)
*/
bool getElevation(
const SpatialReference* inputSRS,
double x,
double y,
ElevationInterpolation interp,
const SpatialReference* srsWithOutputVerticalDatum,
float& out_elevation ) const;
bool getElevationAndNormal(
const SpatialReference* inputSRS,
double x,
double y,
ElevationInterpolation interp,
const SpatialReference* srsWithOutputVerticalDatum,
float& out_elevation,
osg::Vec3& out_normal ) const;
//! Gets the elevation at a point (must be in the same SRS; bilinear interpolation)
float getElevation(double x, double y) const;
//! Gets the normal at a point (must be in the same SRS; bilinear interpolation)
osg::Vec3 getNormal(double x, double y) const;
/**
* Subsamples the heightfield, returning a new heightfield corresponding to
* the destEx extent. The destEx must be a smaller, inset area of sourceEx.
*/
GeoHeightField createSubSample( const GeoExtent& destEx, unsigned int width, unsigned int height, ElevationInterpolation interpolation) const;
/**
* Gets the geospatial extent of the heightfield.
*/
const GeoExtent& getExtent() const;
/**
* The minimum height in the heightfield
*/
float getMinHeight() const { return _minHeight; }
/**
* The maximum height in the heightfield
*/
float getMaxHeight() const { return _maxHeight; }
/**
* Gets a pointer to the underlying OSG heightfield.
*/
const osg::HeightField* getHeightField() const;
osg::HeightField* getHeightField();
//! Normal map
const NormalMap* getNormalMap() const;
NormalMap* getNormalMap();
/**
* Gets a pointer to the underlying OSG heightfield, and releases the internal reference.
*/
osg::HeightField* takeHeightField();
/**
* Gets the X interval of this GeoHeightField
*/
double getXInterval() const;
/**
* Gets the Y interval of this GeoHeightField
*/
double getYInterval() const;
//Sort GeoHeightField's by resolution
struct SortByResolutionFunctor
{
inline bool operator() (const GeoHeightField& lhs, const GeoHeightField& rhs) const
{
return lhs.getXInterval() < rhs.getXInterval();
}
};
protected:
osg::ref_ptr<osg::HeightField> _heightField;
osg::ref_ptr<NormalMap> _normalMap;
GeoExtent _extent;
float _minHeight, _maxHeight;
void init();
};
typedef std::vector<GeoHeightField> GeoHeightFieldVector;
}
#endif // OSGEARTH_GEODATA_H
|