This file is indexed.

/usr/include/openturns/swig/ValueFunction_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
%feature("docstring") OT::ValueFunction
"Spatial function.

Available constructors:
    ValueFunction(*meshDimension=1*)

    ValueFunction(*g, meshDimension=1*)

Parameters
----------
g : :class:`~openturns.Function`
    Function :math:`g: \\\\Rset^d \\\\mapsto \\\\Rset^q`.
meshDimension : int, :math:`n \\\\geq 0`
    Dimension of the vertices of the mesh :math:`\\\\cM`. This data is required
    for tests on the compatibility of dimension when a composite process is
    created using the spatial function.

Notes
-----
A spatial function
:math:`f_{spat}: \\\\cD \\\\times \\\\Rset^d \\\\mapsto \\\\cD \\\\times \\\\Rset^q`, with
:math:`\\\\cD \\\\in \\\\Rset^n`, is a particular
:class:`field function <openturns.FieldFunction>` that lets invariant
the mesh of a field and defined by a function
:math:`g : \\\\Rset^d  \\\\mapsto \\\\Rset^q` such that:

.. math::

    f_{spat}(\\\\vect{t}, \\\\vect{x})=(\\\\vect{t}, g(\\\\vect{x}))

Let's note that the input dimension of :math:`f_{spat}` still designs the
dimension of :math:`\\\\vect{x}`: :math:`d`. Its output dimension is equal to
:math:`q`.

See also
--------
VertexValueFunction

Examples
--------
>>> import openturns as ot

Create a function :math:`g : \\\\Rset^d \\\\mapsto \\\\Rset^q` such as:

.. math::

    g: \\\\left|\\\\begin{array}{rcl}
                \\\\Rset & \\\\rightarrow & \\\\Rset \\\\\\\\
                x & \\\\mapsto & x^2
            \\\\end{array}\\\\right.

>>> g = ot.SymbolicFunction(['x'], ['x^2'])

Convert :math:`g` into a spatial function with :math:`n` the dimension of the
mesh of the field on which :math:`g` will be applied:

>>> n = 1
>>> myValueFunction = ot.ValueFunction(g, n)
>>> # Create a TimeSeries
>>> tg = ot.RegularGrid(0.0, 0.2, 6)
>>> data = ot.Sample(tg.getN(), g.getInputDimension())
>>> for i in range(data.getSize()):
...     for j in range(data.getDimension()):
...         data[i, j] = i * data.getDimension() + j
>>> ts = ot.TimeSeries(tg, data)
>>> print(ts)
    [ t   v0  ]
0 : [ 0   0   ]
1 : [ 0.2 1   ]
2 : [ 0.4 2   ]
3 : [ 0.6 3   ]
4 : [ 0.8 4   ]
5 : [ 1   5   ]
>>> print(myValueFunction(ts))
    [ t    y0   ]
0 : [  0    0   ]
1 : [  0.2  1   ]
2 : [  0.4  4   ]
3 : [  0.6  9   ]
4 : [  0.8 16   ]
5 : [  1   25   ]"

// ---------------------------------------------------------------------

%feature("docstring") OT::ValueFunction::getEvaluation
"Get the evaluation function of :math:`g`.

Returns
-------
g : :class:`~openturns.EvaluationImplementation`
    Evaluation function of :math:`g: \\\\Rset^d \\\\mapsto \\\\Rset^q`.

Examples
--------
>>> import openturns as ot
>>> g = ot.SymbolicFunction(['x'], ['x^2'])
>>> n = 1
>>> myValueFunction = ot.ValueFunction(g, n)
>>> print(myValueFunction.getEvaluation())
[x]->[x^2]"