This file is indexed.

/usr/include/openturns/swig/UserDefinedStationaryCovarianceModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
%feature("docstring") OT::UserDefinedStationaryCovarianceModel
"Stationary covariance model defined by the User.

Parameters
----------
mesh : :class:`~openturns.Mesh`
    A mesh that contains `N` vertices.
sample : :class:`~openturns.CovarianceMatrixCollection`
    A collection of *N* covariance matrices.

Notes
-----
The covariance model is built as follows.

We consider a process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` with :math:`\\\\cD \\\\in \\\\Rset^n`. 

We note :math:`(\\\\vect{t}_0,\\\\dots, \\\\vect{t}_{N-1})` the vertices of :math:`\\\\cM \\\\in \\\\cD` and :math:`(\\\\mat{C}_{k})_{0 \\\\leq  k \\\\leq N-1}` where :math:`\\\\mat{C}_{k} \\\\in \\\\cS_d^+(\\\\Rset)` the collection of covariance matrices fixed by the User.

Then we build a stationary covariance function :math:`C^{stat}` which is a  piecewise constant function defined on :math:`\\\\cD \\\\times \\\\cD` by:

.. math::

    \\\\forall \\\\vect{\\\\tau} \\\\in \\\\cD, \\\\, \\\\quad C^{stat}(\\\\vect{\\\\tau}) =  \\\\mat{C}_k


where *k* is such that :math:`\\\\vect{t}_k` is the  vertex of :math:`\\\\cM` the nearest to :math:`\\\\vect{\\\\tau}`.

Examples
--------
Create a mesh:

>>> import openturns as ot
>>> # Create the time grid
>>> t0 = 0.0
>>> dt = 0.5
>>> N = int((20.0 - t0)/ dt)
>>> myShiftMesh =  ot.RegularGrid(t0, dt, N)

Create the stationary covariance function:

>>> def gamma(tau):
...     return 1.0 / (1.0 + tau * tau)

Create the collection of N covariance matrices:

>>> myCovarianceCollection = ot.CovarianceMatrixCollection()
>>> for k in range(N):
...     t = myShiftMesh.getValue(k)
...     matrix = ot.CovarianceMatrix(1)
...     matrix[0, 0] = gamma(t)
...     myCovarianceCollection.add(matrix)

Create the User defined stationary covariance model:

>>> myCovarianceModel = ot.UserDefinedStationaryCovarianceModel(myShiftMesh,myCovarianceCollection)

Compute the covariance function at the vertex tau:

>>> tau = 1.5
>>> myCovModelMatrix = myCovarianceModel(tau)
"

// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedStationaryCovarianceModel::getMesh
"Accessor to the mesh.

Returns
-------
mesh : :class:`~openturns.Mesh`
    The mesh associated to the collection of covariance matrices.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedStationaryCovarianceModel::getTimeGrid
"Accessor to the time grid.

Returns
-------
mesh : :class:`~openturns.RegularGrid`
    The time grid associated to the collection of covariance matrices when the mesh can be interpreted as a reglar time grid.
"