/usr/include/openturns/swig/UserDefinedCovarianceModel_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | %feature("docstring") OT::UserDefinedCovarianceModel
"Covariance model defined by the User.
Parameters
----------
mesh : :class:`~openturns.Mesh`
A mesh which contains `N` vertices.
sample : :class:`~openturns.CovarianceMatrixCollection`
A collection of :math:`N(N+1)/2` covariance matrices.
Notes
-----
The covariance model is built as follows.
We consider a process :math:`X: \\\\Omega \\\\times \\\\cD \\\\rightarrow \\\\Rset^d` with :math:`\\\\cD \\\\in \\\\Rset^n`. We note :math:`(\\\\vect{t}_0,\\\\dots, \\\\vect{t}_{N-1})` the vertices of :math:`\\\\cM \\\\in \\\\cD` and :math:`(\\\\mat{C}_{k,\\\\ell})_{0 \\\\leq \\\\ell \\\\leq k \\\\leq N-1}` where :math:`\\\\mat{C}_{k,\\\\ell} \\\\in \\\\cS_d^+(\\\\Rset)`.
Care: The covariance matrices :math:`(\\\\mat{C}_{i,j})_{0 \\\\leq j \\\\leq i \\\\leq N-1}` must be given in the following order:
.. math::
\\\\mat{C}_{0,0}, \\\\, \\\\mat{C}_{1, 0}, \\\\, \\\\mat{C}_{1,1}, \\\\, \\\\mat{C}_{2,0}, \\\\,\\\\mat{C}_{2,1},\\\\, \\\\mat{C}_{2,2}, \\\\,\\\\dots
which corresponds to the global covariance matrix, which lower part is:
.. math::
\\\\left(
\\\\begin{array}{cccc}
\\\\mat{C}_{0,0}& & & \\\\\\\\
\\\\mat{C}_{1,0}& \\\\mat{C}_{1,1}& & \\\\\\\\
\\\\mat{C}_{2,0}& \\\\mat{C}_{2,1}& \\\\mat{C}_{2,2}& \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & \\\\dots
\\\\end{array}
\\\\right)
We build a covariance function which is a piecewise constant function defined on :math:`\\\\cD \\\\times \\\\cD` by:
.. math::
\\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD, \\\\, \\\\quad C(\\\\vect{s}, \\\\vect{t}) = \\\\mat{C}_{k(\\\\vect{s}),k(\\\\vect{t})}
where :math:`k(\\\\vect{s})` is such that :math:`\\\\vect{t}_{k(\\\\vect{s})}` is the vertex of :math:`\\\\cM` the nearest to :math:`\\\\vect{s}`.
Note that:
- the matrix :math:`\\\\mat{C}_{k,\\\\ell}` has the index :math:`n=\\\\ell +\\\\dfrac{k(k+1)}{2}` in the collection of covariance matrcies fixed by the User;
- inversely, the matrix stored at index `n` in the collection is the matrix :math:`\\\\mat{C}_{k,\\\\ell}` where:
.. math::
k=\\\\left\\\\lfloor \\\\dfrac{1}{2}\\\\left( \\\\sqrt{8n+1}-1 \\\\right) \\\\right\\\\rfloor, \\\\quad \\\\ell= n-\\\\dfrac{k(k+1)}{2}
Examples
--------
>>> import openturns as ot
>>> import math as m
Create the covariance function at (s,t):
>>> def C(s, t):
... return m.exp( -4.0 * abs(s - t) / (1 + (s * s + t * t)))
Create the time grid:
>>> N = 32
>>> a = 4.0
>>> myMesh = ot.IntervalMesher([N]).build(ot.Interval(-a, a))
Create the collection of elementary covariance matrices
ie the n(n+1)/2 small covariance matrices quantifying
the covariance between X(s) and X(t) for s, t in the
vertices of the mesh and index(s) <= index(t):
>>> myCovarianceCollection = ot.CovarianceMatrixCollection()
>>> for k in range(myMesh.getVerticesNumber()):
... t = myMesh.getVertices()[k]
... for l in range(k + 1):
... s = myMesh.getVertices()[l]
... matrix = ot.CovarianceMatrix(1)
... matrix[0, 0] = C(s[0], t[0])
... myCovarianceCollection.add(matrix)
Create the covariance model:
>>> myCovarianceModel = ot.UserDefinedCovarianceModel(myMesh, myCovarianceCollection)
"
// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedCovarianceModel::getMesh
"Accessor to the mesh.
Returns
-------
mesh : :class:`~openturns.Mesh`
The mesh associated to the collection of covariance matrices.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedCovarianceModel::getTimeGrid
"Accessor to the time grid.
Returns
-------
mesh : :class:`~openturns.RegularGrid`
The time grid associated to the collection of covariance matrices when the mesh can be interpreted as a regular time grid.
"
|