This file is indexed.

/usr/include/openturns/swig/UserDefinedCovarianceModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
%feature("docstring") OT::UserDefinedCovarianceModel
"Covariance model defined by the User.

Parameters
----------
mesh : :class:`~openturns.Mesh`
    A mesh which contains `N` vertices.
sample : :class:`~openturns.CovarianceMatrixCollection`
    A collection of :math:`N(N+1)/2` covariance matrices.

Notes
-----
The covariance model is built as follows.
We consider a process :math:`X: \\\\Omega \\\\times \\\\cD \\\\rightarrow \\\\Rset^d` with :math:`\\\\cD \\\\in \\\\Rset^n`. We note :math:`(\\\\vect{t}_0,\\\\dots, \\\\vect{t}_{N-1})` the vertices of :math:`\\\\cM \\\\in \\\\cD` and :math:`(\\\\mat{C}_{k,\\\\ell})_{0 \\\\leq \\\\ell \\\\leq k \\\\leq N-1}` where :math:`\\\\mat{C}_{k,\\\\ell} \\\\in \\\\cS_d^+(\\\\Rset)`.

Care: The covariance matrices :math:`(\\\\mat{C}_{i,j})_{0 \\\\leq j \\\\leq i \\\\leq N-1}` must be given in the following order:

.. math::

    \\\\mat{C}_{0,0}, \\\\, \\\\mat{C}_{1, 0}, \\\\, \\\\mat{C}_{1,1}, \\\\, \\\\mat{C}_{2,0},  \\\\,\\\\mat{C}_{2,1},\\\\, \\\\mat{C}_{2,2}, \\\\,\\\\dots

which corresponds to the global covariance matrix, which lower part is:

.. math::

    \\\\left(
    \\\\begin{array}{cccc}
    \\\\mat{C}_{0,0}& & & \\\\\\\\
    \\\\mat{C}_{1,0}&  \\\\mat{C}_{1,1}& & \\\\\\\\
    \\\\mat{C}_{2,0}&   \\\\mat{C}_{2,1}& \\\\mat{C}_{2,2}& \\\\\\\\
    \\\\dots & \\\\dots & \\\\dots & \\\\dots
    \\\\end{array}
    \\\\right)


We build a covariance function which is a  piecewise constant function defined on :math:`\\\\cD \\\\times \\\\cD` by:

.. math::

    \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD, \\\\, \\\\quad C(\\\\vect{s}, \\\\vect{t}) =  \\\\mat{C}_{k(\\\\vect{s}),k(\\\\vect{t})}


where :math:`k(\\\\vect{s})` is such that :math:`\\\\vect{t}_{k(\\\\vect{s})}` is the  vertex of :math:`\\\\cM` the nearest to :math:`\\\\vect{s}`.

Note that:

    - the  matrix :math:`\\\\mat{C}_{k,\\\\ell}` has the index :math:`n=\\\\ell +\\\\dfrac{k(k+1)}{2}` in the collection of covariance matrcies fixed by the User;
    - inversely, the matrix stored at index `n` in the collection is the matrix :math:`\\\\mat{C}_{k,\\\\ell}` where:

.. math::

    k=\\\\left\\\\lfloor \\\\dfrac{1}{2}\\\\left( \\\\sqrt{8n+1}-1 \\\\right) \\\\right\\\\rfloor, \\\\quad  \\\\ell= n-\\\\dfrac{k(k+1)}{2}



Examples
--------
>>> import openturns as ot
>>> import math as m

Create the covariance function at (s,t):

>>> def C(s, t):
...     return m.exp( -4.0 * abs(s - t) / (1 + (s * s + t * t)))

Create the time grid:

>>> N = 32
>>> a = 4.0
>>> myMesh = ot.IntervalMesher([N]).build(ot.Interval(-a, a))

Create the collection of elementary covariance matrices 
ie the n(n+1)/2 small covariance matrices quantifying
the covariance between X(s) and X(t) for s, t in the
vertices of the mesh and index(s) <= index(t):

>>> myCovarianceCollection = ot.CovarianceMatrixCollection()
>>> for k in range(myMesh.getVerticesNumber()):
...     t = myMesh.getVertices()[k]
...     for l in range(k + 1):
...         s = myMesh.getVertices()[l]
...         matrix = ot.CovarianceMatrix(1)
...         matrix[0, 0] = C(s[0], t[0])
...         myCovarianceCollection.add(matrix)

Create the covariance model:

>>> myCovarianceModel = ot.UserDefinedCovarianceModel(myMesh, myCovarianceCollection)
"

// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedCovarianceModel::getMesh
"Accessor to the mesh.

Returns
-------
mesh : :class:`~openturns.Mesh`
    The mesh associated to the collection of covariance matrices.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::UserDefinedCovarianceModel::getTimeGrid
"Accessor to the time grid.

Returns
-------
mesh : :class:`~openturns.RegularGrid`
    The time grid associated to the collection of covariance matrices when the mesh can be interpreted as a regular time grid.
"