This file is indexed.

/usr/include/openturns/swig/UniVariateFunctionImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%define OT_UniVariateFunction_doc
"Base class for univariate functions."
%enddef
%feature("docstring") OT::UniVariateFunctionImplementation
OT_UniVariateFunction_doc

// ---------------------------------------------------------------------

%define OT_UniVariateFunction_gradient_doc
"Compute the gradient at point :math:`x`.

Returns
-------
gradient : float
    The value of the function's first-order derivative at point :math:`x`.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0])
>>> print(P.gradient(1.0))
8.0"
%enddef
%feature("docstring") OT::UniVariateFunctionImplementation::gradient
OT_UniVariateFunction_gradient_doc

// ---------------------------------------------------------------------

%define OT_UniVariateFunction_hessian_doc
"Compute the hessian at point :math:`x`.

Parameters
----------
x : float
    Input value.

Returns
-------
hessian : float
    The value of the function's second-order derivative at point :math:`x`."
%enddef
%feature("docstring") OT::UniVariateFunctionImplementation::hessian
OT_UniVariateFunction_hessian_doc

// ---------------------------------------------------------------------

%define OT_UniVariateFunction_draw_doc
"Draw the function.

Parameters
----------
x_min : float, optional
    The starting value that is used for meshing the x-axis.
x_max : float, optional, :math:`x_{\\\\max} > x_{\\\\min}`
    The ending value that is used for meshing the x-axis.
n_points : int, optional
    The number of points that is used for meshing the x-axis.

Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.UniVariatePolynomial([1.0, 2.0, -3.0, 5.0])
>>> View(f.draw(-10.0, 10.0, 100)).show()"
%enddef
%feature("docstring") OT::UniVariateFunctionImplementation::draw
OT_UniVariateFunction_draw_doc