This file is indexed.

/usr/include/openturns/swig/TNC_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
%feature("docstring") OT::TNC
"Truncated Newton Constrained solver.

Available constructors:
    TNC(*problem*)

    TNC(*problem, scale, offset, maxCGit, eta, stepmx, accuracy, fmin, rescale*)

Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
    Optimization problem to solve.
specificParameters : :class:`~openturns.TNCSpecificParameters`
    Parameters for this solver.
scale : sequence of float
    Scaling factors to apply to each variables
offset : sequence of float
    Constant to substract to each variable
maxCGit : int
    Maximum number of hessian*vector evaluation per main iteration
eta : float
    Severity of the line search.
stepmx : float
    Maximum step for the line search. may be increased during call
accuracy : float
    Relative precision for finite difference calculations
fmin : float
    Minimum function value estimate.
rescale : float
    f scaling factor (in log10) used to trigger f value rescaling

Notes
-----
Non-linear optimizer supporting bound constraints.
This solver does not implement the progress callback.

See also
--------
AbdoRackwitz, SQP, Cobyla, NLopt

Examples
--------
>>> import openturns as ot
>>> model = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> bounds = ot.Interval([1.0]*4, [2.0]*4)
>>> problem = ot.OptimizationProblem(model, ot.Function(), ot.Function(), bounds)
>>> algo = ot.TNC(problem)
>>> algo.setStartingPoint([0.0] * 4)
>>> algo.run()
>>> result = algo.getResult()"

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getScale
"Accessor to scale parameter.

Returns
-------
scale : :class:`~openturns.Point`
    Scaling factors to apply to each variable

    if empty, the factors are min-max for interval bounded variables

    and 1+|x] for the others."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setScale
"Accessor to scale parameter.

Parameters
----------
scale : sequence of float
    Scaling factors to apply to each variable

    if empty, the factors are min-max for interval bounded variables

    and 1+|x] for the others."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getOffset
"Accessor to offset parameter.

Returns
-------
offset : :class:`~openturns.Point`
    Constant to substract to each variable

    if empty, the constant are (min-max)/2 for interval bounded

    variables and x for the others."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setOffset
"Accessor to offset parameter.

Parameters
----------
offset : sequence of float
    Constant to substract to each variable

    if empty, the constant are (min-max)/2 for interval bounded

    variables and x for the others."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getMaxCGit
"Accessor to maxCGit parameter.

Returns
-------
maxCGit : int
    Maximum number of hessian*vector evaluation per main iteration

    if maxCGit = 0, the direction chosen is -gradient

    if maxCGit < 0, maxCGit is set to max(1,min(50,n/2))."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setMaxCGit
"Accessor to maxCGit parameter.

Parameters
----------
maxCGit : int
    Maximum number of hessian*vector evaluation per main iteration

    if maxCGit = 0, the direction chosen is -gradient

    if maxCGit < 0, maxCGit is set to max(1,min(50,n/2))."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getEta
"Accessor to eta parameter.

Returns
-------
eta : float
    Severity of the line search.

    if < 0 or > 1, set to 0.25."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setEta
"Accessor to eta parameter.

Parameters
----------
eta : float
    Severity of the line search.

    if < 0 or > 1, set to 0.25."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getStepmx
"Accessor to stepmx parameter.

Returns
-------
stepmx : float
    Maximum step for the line search. may be increased during call

    if too small, will be set to 10.0."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setStepmx
"Accessor to stepmx parameter.

Parameters
----------
stepmx : float
    Maximum step for the line search. may be increased during call

    if too small, will be set to 10.0."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getAccuracy
"Accessor to accuracy parameter.

Returns
-------
accuracy : float
    Relative precision for finite difference calculations

    if <= machine_precision, set to sqrt(machine_precision)."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setAccuracy
"Accessor to accuracy parameter.

Parameters
----------
accuracy : float
    Relative precision for finite difference calculations

    if <= machine_precision, set to sqrt(machine_precision)."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getFmin
"Accessor to fmin parameter.

Returns
-------
fmin : float
    Minimum function value estimate."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setFmin
"Accessor to fmin parameter.

Parameters
----------
fmin : float
    Minimum function value estimate."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::getRescale
"Accessor to rescale parameter.

Returns
-------
rescale : float
    f scaling factor (in log10) used to trigger f value rescaling

    if 0, rescale at each iteration

    if a big value, never rescale

    if < 0, rescale is set to 1.3."

// ---------------------------------------------------------------------

%feature("docstring") OT::TNC::setRescale
"Accessor to rescale parameter.

Parameters
----------
rescale : float
    f scaling factor (in log10) used to trigger f value rescaling

    if 0, rescale at each iteration

    if a big value, never rescale

    if < 0, rescale is set to 1.3."