/usr/include/openturns/swig/TNC_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | %feature("docstring") OT::TNC
"Truncated Newton Constrained solver.
Available constructors:
TNC(*problem*)
TNC(*problem, scale, offset, maxCGit, eta, stepmx, accuracy, fmin, rescale*)
Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
Optimization problem to solve.
specificParameters : :class:`~openturns.TNCSpecificParameters`
Parameters for this solver.
scale : sequence of float
Scaling factors to apply to each variables
offset : sequence of float
Constant to substract to each variable
maxCGit : int
Maximum number of hessian*vector evaluation per main iteration
eta : float
Severity of the line search.
stepmx : float
Maximum step for the line search. may be increased during call
accuracy : float
Relative precision for finite difference calculations
fmin : float
Minimum function value estimate.
rescale : float
f scaling factor (in log10) used to trigger f value rescaling
Notes
-----
Non-linear optimizer supporting bound constraints.
This solver does not implement the progress callback.
See also
--------
AbdoRackwitz, SQP, Cobyla, NLopt
Examples
--------
>>> import openturns as ot
>>> model = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> bounds = ot.Interval([1.0]*4, [2.0]*4)
>>> problem = ot.OptimizationProblem(model, ot.Function(), ot.Function(), bounds)
>>> algo = ot.TNC(problem)
>>> algo.setStartingPoint([0.0] * 4)
>>> algo.run()
>>> result = algo.getResult()"
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getScale
"Accessor to scale parameter.
Returns
-------
scale : :class:`~openturns.Point`
Scaling factors to apply to each variable
if empty, the factors are min-max for interval bounded variables
and 1+|x] for the others."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setScale
"Accessor to scale parameter.
Parameters
----------
scale : sequence of float
Scaling factors to apply to each variable
if empty, the factors are min-max for interval bounded variables
and 1+|x] for the others."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getOffset
"Accessor to offset parameter.
Returns
-------
offset : :class:`~openturns.Point`
Constant to substract to each variable
if empty, the constant are (min-max)/2 for interval bounded
variables and x for the others."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setOffset
"Accessor to offset parameter.
Parameters
----------
offset : sequence of float
Constant to substract to each variable
if empty, the constant are (min-max)/2 for interval bounded
variables and x for the others."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getMaxCGit
"Accessor to maxCGit parameter.
Returns
-------
maxCGit : int
Maximum number of hessian*vector evaluation per main iteration
if maxCGit = 0, the direction chosen is -gradient
if maxCGit < 0, maxCGit is set to max(1,min(50,n/2))."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setMaxCGit
"Accessor to maxCGit parameter.
Parameters
----------
maxCGit : int
Maximum number of hessian*vector evaluation per main iteration
if maxCGit = 0, the direction chosen is -gradient
if maxCGit < 0, maxCGit is set to max(1,min(50,n/2))."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getEta
"Accessor to eta parameter.
Returns
-------
eta : float
Severity of the line search.
if < 0 or > 1, set to 0.25."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setEta
"Accessor to eta parameter.
Parameters
----------
eta : float
Severity of the line search.
if < 0 or > 1, set to 0.25."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getStepmx
"Accessor to stepmx parameter.
Returns
-------
stepmx : float
Maximum step for the line search. may be increased during call
if too small, will be set to 10.0."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setStepmx
"Accessor to stepmx parameter.
Parameters
----------
stepmx : float
Maximum step for the line search. may be increased during call
if too small, will be set to 10.0."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getAccuracy
"Accessor to accuracy parameter.
Returns
-------
accuracy : float
Relative precision for finite difference calculations
if <= machine_precision, set to sqrt(machine_precision)."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setAccuracy
"Accessor to accuracy parameter.
Parameters
----------
accuracy : float
Relative precision for finite difference calculations
if <= machine_precision, set to sqrt(machine_precision)."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getFmin
"Accessor to fmin parameter.
Returns
-------
fmin : float
Minimum function value estimate."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setFmin
"Accessor to fmin parameter.
Parameters
----------
fmin : float
Minimum function value estimate."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::getRescale
"Accessor to rescale parameter.
Returns
-------
rescale : float
f scaling factor (in log10) used to trigger f value rescaling
if 0, rescale at each iteration
if a big value, never rescale
if < 0, rescale is set to 1.3."
// ---------------------------------------------------------------------
%feature("docstring") OT::TNC::setRescale
"Accessor to rescale parameter.
Parameters
----------
rescale : float
f scaling factor (in log10) used to trigger f value rescaling
if 0, rescale at each iteration
if a big value, never rescale
if < 0, rescale is set to 1.3."
|