This file is indexed.

/usr/include/openturns/swig/SymmetricMatrix_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
%feature("docstring") OT::SymmetricMatrix
"Real symmetric matrix.

Parameters
----------
size : int, :math:`n > 0`, optional
    Matrix size.
    Default is 1.
values : sequence of float with size :math:`n^2`, optional
    Values. OpenTURNS uses **column-major** ordering (like Fortran) for
    reshaping the flat list of values.
    Default creates a zero matrix.

Raises
------
TypeError : If the matrix is not symmetric.

Examples
--------
Create a matrix

>>> import openturns as ot
>>> M = ot.SymmetricMatrix(2, [0.0, 2.0, 2.0, 1.0])
>>> print(M)
[[ 0 2 ]
 [ 2 1 ]]

Get or set terms

>>> print(M[0, 0])
0.0
>>> M[0, 0] = 1.0
>>> print(M[0, 0])
1.0
>>> print(M[:, 0])
[[ 1 ]
 [ 2 ]]

Create an openturns matrix from a **symmetric** numpy 2d-array (or matrix, or
2d-list)...

>>> import numpy as np
>>> np_2d_array = np.array([[1.0, 2.0], [2.0, 4.0]])
>>> ot_matrix = ot.SymmetricMatrix(np_2d_array)

and back

>>> np_matrix = np.matrix(ot_matrix)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymmetricMatrix::computeEigenValues
"Compute eigen values.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
eigenvalues : :class:`~openturns.Point`
    Eigen values.

See Also
--------
computeEV

Examples
--------
>>> import openturns as ot
>>> M = ot.SymmetricMatrix([[1.0, 2.0], [2.0, -4.0]])
>>> print(M.computeEigenValues())
[-4.70156,1.70156]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymmetricMatrix::computeEV
"Compute the eigen values decomposition (EVD).

The eigen values decomposition of a square matrix :math:`\\\\mat{M}` with
size :math:`n` reads:

.. math::

    \\\\mat{M} = \\\\mat{\\\\Phi} \\\\mat{\\\\Lambda} \\\\Tr{\\\\mat{\\\\Phi}}

where :math:`\\\\mat{\\\\Lambda}` is an :math:`n \\\\times n` diagonal matrix and
:math:`\\\\mat{\\\\Phi}` is an :math:`n \\\\times n` orthogonal matrix.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
eigen_values : :class:`~openturns.Point`
    The vector of eigen values with size :math:`n` that form the diagonal of
    the :math:`n \\\\times n` matrix :math:`\\\\mat{\\\\Lambda}` of the EVD.
Phi : :class:`~openturns.SquareComplexMatrix`
    The left matrix of the EVD.

Notes
-----
This uses LAPACK'S `DSYEV <http://www.netlib.org/lapack/lapack-3.1.1/html/dsyev.f.html>`_.

Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.SymmetricMatrix([[1.0, 2.0], [2.0, -4.0]])
>>> eigen_values, Phi = M.computeEV()
>>> Lambda = ot.SquareMatrix(M.getDimension())
>>> for i in range(eigen_values.getSize()):
...     Lambda[i, i] = eigen_values[i]
>>> np.testing.assert_array_almost_equal(Phi * Lambda * Phi.transpose(), M)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymmetricMatrix::checkSymmetry
"Check if the internal representation is really symmetric."