/usr/include/openturns/swig/SymmetricMatrix_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | %feature("docstring") OT::SymmetricMatrix
"Real symmetric matrix.
Parameters
----------
size : int, :math:`n > 0`, optional
Matrix size.
Default is 1.
values : sequence of float with size :math:`n^2`, optional
Values. OpenTURNS uses **column-major** ordering (like Fortran) for
reshaping the flat list of values.
Default creates a zero matrix.
Raises
------
TypeError : If the matrix is not symmetric.
Examples
--------
Create a matrix
>>> import openturns as ot
>>> M = ot.SymmetricMatrix(2, [0.0, 2.0, 2.0, 1.0])
>>> print(M)
[[ 0 2 ]
[ 2 1 ]]
Get or set terms
>>> print(M[0, 0])
0.0
>>> M[0, 0] = 1.0
>>> print(M[0, 0])
1.0
>>> print(M[:, 0])
[[ 1 ]
[ 2 ]]
Create an openturns matrix from a **symmetric** numpy 2d-array (or matrix, or
2d-list)...
>>> import numpy as np
>>> np_2d_array = np.array([[1.0, 2.0], [2.0, 4.0]])
>>> ot_matrix = ot.SymmetricMatrix(np_2d_array)
and back
>>> np_matrix = np.matrix(ot_matrix)"
// ---------------------------------------------------------------------
%feature("docstring") OT::SymmetricMatrix::computeEigenValues
"Compute eigen values.
Parameters
----------
keep_intact : bool, optional
A flag telling whether the present matrix can be overwritten or not.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
eigenvalues : :class:`~openturns.Point`
Eigen values.
See Also
--------
computeEV
Examples
--------
>>> import openturns as ot
>>> M = ot.SymmetricMatrix([[1.0, 2.0], [2.0, -4.0]])
>>> print(M.computeEigenValues())
[-4.70156,1.70156]"
// ---------------------------------------------------------------------
%feature("docstring") OT::SymmetricMatrix::computeEV
"Compute the eigen values decomposition (EVD).
The eigen values decomposition of a square matrix :math:`\\\\mat{M}` with
size :math:`n` reads:
.. math::
\\\\mat{M} = \\\\mat{\\\\Phi} \\\\mat{\\\\Lambda} \\\\Tr{\\\\mat{\\\\Phi}}
where :math:`\\\\mat{\\\\Lambda}` is an :math:`n \\\\times n` diagonal matrix and
:math:`\\\\mat{\\\\Phi}` is an :math:`n \\\\times n` orthogonal matrix.
Parameters
----------
keep_intact : bool, optional
A flag telling whether the present matrix can be overwritten or not.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
eigen_values : :class:`~openturns.Point`
The vector of eigen values with size :math:`n` that form the diagonal of
the :math:`n \\\\times n` matrix :math:`\\\\mat{\\\\Lambda}` of the EVD.
Phi : :class:`~openturns.SquareComplexMatrix`
The left matrix of the EVD.
Notes
-----
This uses LAPACK'S `DSYEV <http://www.netlib.org/lapack/lapack-3.1.1/html/dsyev.f.html>`_.
Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.SymmetricMatrix([[1.0, 2.0], [2.0, -4.0]])
>>> eigen_values, Phi = M.computeEV()
>>> Lambda = ot.SquareMatrix(M.getDimension())
>>> for i in range(eigen_values.getSize()):
... Lambda[i, i] = eigen_values[i]
>>> np.testing.assert_array_almost_equal(Phi * Lambda * Phi.transpose(), M)"
// ---------------------------------------------------------------------
%feature("docstring") OT::SymmetricMatrix::checkSymmetry
"Check if the internal representation is really symmetric."
|