This file is indexed.

/usr/include/openturns/swig/SymbolicFunction_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
%feature("docstring") OT::SymbolicFunction
"Symbolic function.

Available constructor:
    SymbolicFunction(*inputs, formulas*)

Parameters
----------
inputs : sequence of str, or str
    List of input variables names of the function.
formulas : sequence of str, or str
    List of analytical formulas between the inputs and the outputs.
    The function is defined by *ouputs = formulas(inputs)*.

Available functions:

    - sin
    - cos
    - tan
    - asin
    - acos
    - atan
    - sinh
    - cosh
    - tanh
    - asinh
    - acosh
    - atanh
    - log2
    - log10
    - log
    - ln
    - lngamma
    - gamma
    - exp
    - erf
    - erfc
    - sqrt
    - cbrt
    - besselJ0
    - besselJ1
    - besselY0
    - besselY1
    - sign
    - rint
    - abs
    - min
    - max
    - sum
    - avg
    - floor
    - ceil
    - trunc
    - round

    Available operators:

    - = (assignment)
    - && (logical and)
    - || (logical or)
    - <= (less or equal)
    - >= (greater or equal)
    - != (not equal)
    - == (equal)
    - > (greater than)
    - < (less than)
    - \\\\+ (addition)
    - \\\\- (subtraction)
    - \\\\* (multiplication)
    - / (division)
    - ^ (raise x to the power of y)

    Available constants:

    - _e (Euler's constant)
    - _pi (Pi)

Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x0', 'x1'], ['x0 + x1', 'x0 - x1'])
>>> print(f([1, 2]))
[3,-1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymbolicFunction::GetValidFunctions
"Return the list of valid functions.

Returns
-------
list_functions : :class:`~openturns.Description`
    List of the functions we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.SymbolicFunction.GetValidFunctions()[0])
sin(arg) -> sine function"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymbolicFunction::GetValidConstants
"Return the list of valid constants.

Returns
-------
list_constants : :class:`~openturns.Description`
    List of the constants we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.SymbolicFunction.GetValidConstants()[0])
_e -> Euler's constant (2.71828...)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SymbolicFunction::GetValidOperators
"Return the list of valid operators.

Returns
-------
list_operators : :class:`~openturns.Description`
    List of the operators we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.SymbolicFunction.GetValidOperators()[0])
= -> assignement, can only be applied to variable names (priority -1)"