This file is indexed.

/usr/include/openturns/swig/SubsetSampling_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
%feature("docstring") OT::SubsetSampling
"Subset simulation.

Parameters
----------
event : :class:`~openturns.Event`
    Event we are computing the probability of.
proposalRange : float, optional
    Proposal range length
targetProbability : float, optional
    Value of :math:`P(F_i|F_{i-1})` between successive steps

Notes
-----
The goal is to estimate the following probability

.. math::

    P_f = \\\\int_{\\\\mathcal D_f} f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}\\\\\\\\
        = \\\\int_{\\\\mathbb R^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\:\\\\leq 0\\\\: \\\\}}f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}\\\\\\\\
        = \\\\Prob {\\\\{g(\\\\uX,\\\\underline{d}) \\\\leq 0\\\\}}


The idea of the subset simulation method [Au2001]_ is to replace simulating a
rare failure event in the original probability space by a sequence of
simulations of more frequent conditional events :math:`F_i`

.. math::

    F_1 \\\\supset F_2 \\\\supset \\\\dots \\\\supset F_m = F


The original probability estimate rewrites

.. math::

    P_f = P(F_m) = P(\\\\bigcap \\\\limits_{i=1}^m F_i) = P(F_1) \\\\prod_{i=2}^m P(F_i|F_{i-1})


And each conditional subset failure region is chosen by setting the threshold
:math:`g_i` so that :math:`P(F_i|F_{i-1})` leads to a conditional failure
probability of order :math:`0.1`

.. math::

    F_i =\\\\Prob {\\\\{g(\\\\uX,\\\\underline{d}) \\\\leq g_i\\\\}}


The conditional samples are generated by the means of Markov Chains,
using the Metropolis Hastings algorithm.

:math:`N` being the number of simulations per subset, and :math:`p_{0i}` the
conditional probability of each subset event, and :math:`\\\\gamma_i` the
autocorrelation between Markov chain samples.

.. math::

    \\\\delta^2 = \\\\sum_{i=1}^m \\\\delta^2_i = \\\\sum_{i=1}^m (1+\\\\gamma_i) \\\\frac{1-p_{0i}}{p_{0i}N}


The first event :math:`F_1` not being conditional, :math:`\\\\delta^2_1`
expresses as the classic Monte Carlo c.o.v.

See also
--------
Simulation"

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getCoefficientOfVariationPerStep
"Coefficient of variation per step accessor.

Returns
-------
coef : `~openturns.Point`
    Coefficient of variation at each subset step."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::setConditionalProbability
"Conditional probability accessor.

Value of :math:`P(F_i|F_{i-1})` between successive steps.

Parameters
----------
prob : float
    Conditional probability value."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getConditionalProbability
"Conditional probability accessor.

Value of :math:`P(F_i|F_{i-1})` between successive steps.

Returns
-------
prob : float
    Conditional probability value."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::setKeepEventSample
"Sample storage accessor.

Parameters
----------
prob : bool
    Whether to keep the event samples."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getEventInputSample
"Input sample accessor.

Returns
-------
inputSample : `~openturns.Sample`
    Input sample."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getEventOutputSample
"Output sample accessor.

Returns
-------
outputSample : `~openturns.Sample`
    Ouput sample."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getThresholdPerStep
"Threshold accessor.

Returns
-------
threshold : `~openturns.Point`
    Threshold values."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getGammaPerStep
"Autocorrelation accessor.

Returns
-------
prob : `~openturns.Point`
    Autocorrelation values."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getProbabilityEstimatePerStep
"Probability estimate accessor.

Returns
-------
prob : `~openturns.Point`
    Probability estimate values."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getNumberOfSteps
"Subset steps number accesor.

Returns
-------
n : int
    Number of subset steps."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::setProposalRange
"Proposal range length accessor.

Parameters
----------
range : float
    Range length."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::getProposalRange
"Proposal range length accessor.

Returns
-------
range : float
    Range length."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::setBetaMin
"Hypersphere radius accessor.

Parameters
----------
beta : float
    Radius value of the exclusion hypershere when the conditional simulation
    is enabled."

// ---------------------------------------------------------------------------

%feature("docstring") OT::SubsetSampling::setISubset
"Conditonal simulation flag accessor.

Parameters
----------
isubset : bool
    Whether to enable conditional simulation for the first step of the
    simulation."