This file is indexed.

/usr/include/openturns/swig/SquareMatrix_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
%feature("docstring") OT::SquareMatrix
"Real square matrix.

Parameters
----------
size : int, :math:`n > 0`, optional
    Matrix size.
    Default is 1.
values : sequence of float with size :math:`n^2`, optional
    Values. OpenTURNS uses **column-major** ordering (like Fortran) for
    reshaping the flat list of values.
    Default creates a zero matrix.

Examples
--------
Create a matrix

>>> import openturns as ot
>>> M = ot.SquareMatrix(2, range(2 * 2))
>>> print(M)
[[ 0 2 ]
 [ 1 3 ]]

Get or set terms

>>> print(M[0, 0])
0.0
>>> M[0, 0] = 1.0
>>> print(M[0, 0])
1.0
>>> print(M[:, 0])
[[ 1 ]
 [ 1 ]]

Create an openturns matrix from a **square** numpy 2d-array (or matrix, or
2d-list)...

>>> import numpy as np
>>> np_2d_array = np.array([[1.0, 2.0], [3.0, 4.0]])
>>> ot_matrix = ot.SquareMatrix(np_2d_array)

and back

>>> np_matrix = np.matrix(ot_matrix)

Basic linear algebra operations (provided the dimensions are compatible)

>>> A = ot.Matrix([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
>>> B = ot.SquareMatrix(np.eye(2))
>>> C = ot.Matrix(3, 2, [1.0] * 3 * 2)
>>> print(A * B - C)
[[ 0 1 ]
 [ 2 3 ]
 [ 4 5 ]]
>>> A = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> print(A ** 2)
[[  7 10 ]
 [ 15 22 ]]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::computeDeterminant
"Compute the determinant.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
determinant : float
    The square matrix determinant.

Examples
--------
>>> import openturns as ot
>>> A = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> A.computeDeterminant()
-2.0"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::computeEigenValues
"Compute eigen values.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
eigenvalues : :class:`~openturns.ComplexCollection`
    Eigen values.

See Also
--------
computeEV

Examples
--------
>>> import openturns as ot
>>> M = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> M.computeEigenValues()
[(-0.372281,0),(5.37228,0)]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::computeEV
"Compute the eigen values decomposition (EVD).

The eigen values decomposition of a square matrix :math:`\\\\mat{M}` with
size :math:`n` reads:

.. math::

    \\\\mat{M} = \\\\mat{\\\\Phi} \\\\mat{\\\\Lambda} \\\\mat{\\\\Phi}^{-1}

where :math:`\\\\mat{\\\\Lambda}` is an :math:`n \\\\times n` diagonal matrix and
:math:`\\\\mat{\\\\Phi}` is an :math:`n \\\\times n` orthogonal matrix.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
eigen_values : :class:`~openturns.ComplexCollection`
    The vector of eigen values with size :math:`n` that form the diagonal of
    the :math:`n \\\\times n` matrix :math:`\\\\mat{\\\\Lambda}` of the EVD.
Phi : :class:`~openturns.SquareComplexMatrix`
    The left matrix of the EVD.

Notes
-----
This uses LAPACK'S `DGEEV <http://www.netlib.org/lapack/lapack-3.1.1/html/dgeev.f.html>`_.

Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> eigen_values, Phi = M.computeEV()
>>> Lambda = ot.SquareComplexMatrix(M.getDimension())
>>> for i in range(eigen_values.getSize()):
...     Lambda[i, i] = eigen_values[i]
>>> from scipy.linalg import inv # SquareComplexMatrix does not implement solveLinearSystem
>>> Phi, Lambda = np.matrix(Phi), np.matrix(Lambda)
>>> np.testing.assert_array_almost_equal(Phi * Lambda * inv(Phi), M)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::computeLogAbsoluteDeterminant
"Compute the logarithm of the absolute value of the determinant.

Parameters
----------
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
determinant : float
    The logarithm of the absolute value of the square matrix determinant.
sign : float
    The sign of the determinant.

Examples
--------
>>> import openturns as ot
>>> A = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> A.computeLogAbsoluteDeterminant()
[0.693147..., -1.0]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::getDimension
"Accessor to the dimension (the number of rows).

Returns
-------
dimension : int"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::isDiagonal
"Test whether the matrix is diagonal or not.

Returns
-------
test : bool
    Answer."

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::solveLinearSystem
"Solve a square linear system whose the present matrix is the operator.

Parameters
----------
rhs : sequence of float or :class:`~openturns.Matrix` with :math:`n_r` values or rows, respectively
    The right hand side member of the linear system.
keep_intact : bool, optional
    A flag telling whether the present matrix can be overwritten or not.
    Default is *True* and leaves the present matrix unchanged.

Returns
-------
solution : :class:`~openturns.Point` or :class:`~openturns.Matrix`
    The solution of the square linear system.

Notes
-----
This will handle both matrices and vectors. Note that you'd better type
explicitely the matrix if it has some properties that could simplify the
resolution (see :class:`~openturns.TriangularMatrix`).

This uses LAPACK'S `DGESV <http://www.netlib.org/lapack/lapack-3.1.1/html/dgesv.f.html>`_
for matrices and `DGELSY <http://www.netlib.org/lapack/lapack-3.1.1/html/dgelsy.f.html>`_
for vectors.

Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> b = ot.Point([1.0] * 2)
>>> x = M.solveLinearSystem(b)
>>> np.testing.assert_array_almost_equal(M * x, b)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::transpose
"Transpose the matrix.

Returns
-------
MT : :class:`~openturns.SquareMatrix`
    The transposed matrix.

Examples
--------
>>> import openturns as ot
>>> M = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> print(M)
[[ 1 2 ]
 [ 3 4 ]]
>>> print(M.transpose())
[[ 1 3 ]
 [ 2 4 ]]"

// ---------------------------------------------------------------------

%feature("docstring") OT::SquareMatrix::computeTrace
"Compute the trace of the matrix.

Returns
-------
trace : float
    The trace of the matrix.

Examples
--------
>>> import openturns as ot
>>> M = ot.SquareMatrix([[1.0, 2.0], [3.0, 4.0]])
>>> M.computeTrace()
5.0"