This file is indexed.

/usr/include/openturns/swig/SphericalModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%feature("docstring") OT::SphericalModel
"Spherical covariance function.

Available constructors:
    SphericalModel(*spatialDim=1*)

    SphericalModel(*scale, amplitude*)

    SphericalModel(*scale, amplitude, radius*)

Parameters
----------
spatialDim : int
    Spatial dimension :math:`n`.
    By default, equal to 1.
scale : sequence of positive floats
    Scale coefficient :math:`\\\\vect{\\\\theta}\\\\in \\\\Rset^n`.
    The size of :math:`\\\\vect{\\\\theta}` is the spatial dimension.
amplitude : sequence of positive floats
    Amplitude of the process :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d`.
    Must be of size equal to 1.
    By default, equal to :math:`[1]`.
radius : float, :math:`a > 0`
    Radius of the sphere on which the covariance model is not zero.
    By default, equal to 1.


Notes
-----
The *spherical* function is a stationary covariance function whith dimension :math:`d=1`.

We consider the scalar stochastic process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset`, where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`.

The  *spherical*  function is defined on the sphere which ray is :math:`a`:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\sigma^2  \\\\left[1 - \\\\frac{1}{2a} \\\\left\\\\|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right\\\\|_2  \\\\left(3 -  \\\\frac{1}{a^2}\\\\left\\\\|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right\\\\|_2^2\\\\right) \\\\right], \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}), \\\\left\\\\|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right\\\\|_2 \\\\leq a

The function is equal to zero outside the sphere.

The correlation function :math:`\\\\rho` writes:

.. math::

    \\\\rho(\\\\vect{s}, \\\\vect{t}) = 1 - \\\\frac{1}{2a} \\\\left\\\\|\\\\vect{s} - \\\\vect{t}\\\\right\\\\|_2 \\\\left(3 - \\\\frac{1}{a^2}\\\\left\\\\| \\\\vect{s} - \\\\vect{t} \\\\right\\\\|_2^2\\\\right), \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}), \\\\left\\\\|  \\\\vect{s} - \\\\vect{t} \\\\right\\\\|_2 \\\\leq a

and is equal to zero outside the sphere.


See Also
--------
CovarianceModel

Examples
--------
Create a standard spherical covariance function:

>>> import openturns as ot
>>> covModel = ot.SphericalModel(2)
>>> t = [0.1, 0.3]
>>> s = [0.2, 0.4]
>>> print(covModel(s, t))
[[ 0.789282 ]]
>>> tau = [0.1, 0.3]
>>> print(covModel(tau))
[[ 0.54147 ]]

Create a  spherical covariance function specifying the scale, amplitude vectors:

>>> covarianceModel = ot.SphericalModel([0.2, 0.3], [2.5])

Create a  squared exponential covariance function specifying the scale vector, the amplitude and radius:

>>> covModel3 = ot.SphericalModel([0.2, 0.3], [2.5], 2.3)"

// ---------------------------------------------------------------------

%feature("docstring") OT::SphericalModel::setRadius
"Radius accessor.

Parameters
----------
radius : float, :math:`a > 0`
    Radius of the sphere on which the covariance model is not zero."

// ---------------------------------------------------------------------

%feature("docstring") OT::SphericalModel::getRadius
"Radius accessor.

Returns
-------
radius : float, :math:`a > 0`
    Radius of the sphere on which the covariance model is not zero."