This file is indexed.

/usr/include/openturns/swig/SpectralGaussianProcess_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
%feature("docstring") OT::SpectralGaussianProcess
"Spectral normal process.

Available constructors:
    SpectralGaussianProcess(*secondOrderModel, timeGrid*)

    SpectralGaussianProcess(*spectralModel, timeGrid*)

    SpectralGaussianProcess(*secondOrderModel, fmax, N*)

    SpectralGaussianProcess(*spectralModel, maxFreq, N*)

Parameters
----------
secondOrderModel : :class:`~openturns.SecondOrderModel`

timeGrid : :class:`~openturns.RegularGrid`
    The time grid associated to the process. OpenTURNS has only implemented
    the algorithm when the mesh is a regular grid.
spectralModel : :class:`~openturns.SpectralModel`
maxFreq : float
    Equal to the maximal frequency minus :math:`\\\\Delta f`.
N : float
    The number of points in the frequency grid, which is equal to the number of
    time stamps of the time grid.

Notes
-----

- In the first usage, we fix the time grid and the second order model (spectral
  density model) which implements the process. The frequency discretization is
  deduced from the time discretization by the formulas
  :math:`f_{max} = \\\\frac{1}{\\\\Delta t}, \\\\quad \\\\Delta f = \\\\frac{1}{t_{max}}, N = \\\\frac{f_{max}}{\\\\Delta f}= \\\\frac{t_{max}}{\\\\Delta t}`

- In the second usage, the process is fixed in the frequency domain. *fmax*
  value and *N* induce the time grid. Care: the maximal frequency used in the
  computation is not *fmax* but :math:`(1-1/N)fmax = fmax - \\\\Delta f`.

- In the third usage, the spectral model is given and the other arguments are
  the same as the first usage.

- In the fourth usage, the spectral model is given and the other arguments are
  the same as the second usage.

The first call of :meth:`getRealization` might be time consuming because it
computes :math:`N` hermitian matrices of size :math:`d \\\\times \\\\ d`, where
:math:`d` is the dimension of the spectral model. These matrices are factorized
and stored in order to be used for each call of the *getRealization* method.

Examples
--------
Create a *SpectralGaussianProcess* from a spectral model and a time grid:

>>> import openturns as ot
>>> amplitude = [1.0, 2.0]
>>> scale = [4.0, 5.0]
>>> spatialCorrelation = ot.CorrelationMatrix(2)
>>> spatialCorrelation[0,1] = 0.8
>>> myTimeGrid =  ot.RegularGrid(0.0, 0.1, 20)
>>> mySpectralModel = ot.CauchyModel(scale, amplitude, spatialCorrelation)
>>> mySpectNormProc1 = ot.SpectralGaussianProcess(mySpectralModel, myTimeGrid)

Create a *SpectralGaussianProcess* from a second order model and a time grid:

>>> import openturns as ot
>>> amplitude = [1.0]
>>> scale = [4.0, 5.0]
>>> myTimeGrid =  ot.RegularGrid(0.0, 0.1, 20)
>>> mySecondOrderModel = ot.ExponentialCauchy(scale, amplitude)
>>> mySpectNormProc2 = ot.SpectralGaussianProcess(mySecondOrderModel, myTimeGrid)
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getFFTAlgorithm
"Get the FFT algorithm used to generate realizations of the spectral normal process.

Returns
-------
fftAlgo : :class:`~openturns.FFT`
    FFT algorithm used to generate realizations of the spectral normal process.
    By default, it is the :class:`~openturns.KissFFT` algorithm.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::setFFTAlgorithm
"Set the FFT algorithm used to generate realizations of the spectral normal process.

Parameters
----------
fftAlgo : :class:`~openturns.FFT`
    FFT algorithm that will be used to generate realizations of the spectral
    normal process. OpenTURNS provides the :class:`~openturns.KissFFT`
    algorithm. More efficient implementations are provided by the
    *openturns-fftw* module.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getFrequencyStep
"Get the frequency step :math:`\\\\Delta f` used to discretize the spectral model.

Returns
-------
freqStep : float
    The frequency step :math:`\\\\Delta f` used to discretize the spectral model.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getFrequencyGrid
"Get the frequency grid used to discretize the spectral model.

Returns
-------
freqGrid : :class:`~openturns.RegularGrid`
    The frequency grid used to discretize the spectral model.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getMaximalFrequency
"Get the maximal frequency used in the computation.

Returns
-------
freqMax : float
    The maximal frequency used in the computation: :math:`(1-1/N)fmax = fmax - \\\\Delta f`.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getNFrequency
"Get the  number of points in the frequency grid.

Returns
-------
freqGrid : :class:`~openturns.RegularGrid`
    The number :math:`N` of points in the frequency grid, which is equal to the
    number of time stamps of the time grid.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::SpectralGaussianProcess::getSpectralModel
"Get the spectral model.

Returns
-------
specMod : :class:`~openturns.SpectralModel`
    The spectral model defining the process.
"