/usr/include/openturns/swig/Simulation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | %feature("docstring") OT::Simulation
"Base class for sampling methods.
Available constructor:
Simulation(*event, verbose=True, convergenceStrategy=ot.Compact()*)
Parameters
----------
event : :class:`~openturns.Event`
The event we are computing the probability of.
verbose : bool
If *True*, make the computation verbose.
convergenceStrategy : :class:`~openturns.HistoryStrategy`
Storage strategy used to store the values of the probability estimator and
its variance during the simulation algorithm.
Notes
-----
Base class for sampling methods, using the probability distribution of a random
vector :math:`\\\\vect{X}` to evaluate the failure probability:
.. math::
P_f = \\\\int_{\\\\Rset^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\leq 0 \\\\}}f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}
= \\\\Prob{g\\\\left( \\\\vect{X},\\\\vect{d} \\\\right) \\\\leq 0}
Here, :math:`\\\\vect{X}` is a random vector, :math:`\\\\vect{d}` a deterministic
vector, :math:`g(\\\\vect{X},\\\\vect{d})` the function known as *limit state function*
which enables the definition of the event
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, | \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`.
:math:`\\\\mathbf{1}_{ \\\\left\\\\{ g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0 \\\\right\\\\} }`
describes the indicator function equal to 1 if
:math:`g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0` and equal to 0 otherwise.
A Simulation object can be created only through its derived classes:
- :class:`~openturns.DirectionalSampling`
- :class:`~openturns.ImportanceSampling`,
- :class:`~openturns.LHS`,
- :class:`~openturns.MonteCarlo`,
- :class:`~openturns.QuasiMonteCarlo`,
- :class:`~openturns.PostAnalyticalControlledImportanceSampling`,
- :class:`~openturns.PostAnalyticalImportanceSampling`,
- :class:`~openturns.RandomizedLHS`,
- :class:`~openturns.RandomizedQuasiMonteCarlo`.
See also
--------
SimulationResult"
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getBlockSize
"Accessor to the block size.
Returns
-------
blockSize : int
Number of terms in the probability simulation estimator grouped together.
It is set by default to 1."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setBlockSize
"Accessor to the block size.
Parameters
----------
blockSize : int, :math:`blockSize \\\\geq 1`
Number of terms in the probability simulation estimator grouped together.
It is set by default to 1.
Notes
-----
For Monte Carlo, LHS and Importance Sampling methods, this allows to save space
while allowing multithreading, when available we recommend
to use the number of available CPUs; for the Directional Sampling, we recommend
to set it to 1."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getConvergenceStrategy
"Accessor to the convergence strategy.
Returns
-------
storage_strategy : :class:`~openturns.HistoryStrategy`
Storage strategy used to store the values of the probability estimator
and its variance during the simulation algorithm."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setConvergenceStrategy
"Accessor to the convergence strategy.
Parameters
----------
storage_strategy : :class:`~openturns.HistoryStrategy`
Storage strategy used to store the values of the probability estimator
and its variance during the simulation algorithm."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getMaximumCoefficientOfVariation
"Accessor to the maximum coefficient of variation.
Returns
-------
coefficient : float
Maximum coefficient of variation of the simulated sample."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setMaximumCoefficientOfVariation
"Accessor to the maximum coefficient of variation.
Parameters
----------
coefficient : float
Maximum coefficient of variation of the simulated sample."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getMaximumOuterSampling
"Accessor to the maximum sample size.
Returns
-------
outerSampling : int
Maximum number of groups of terms in the probability simulation estimator."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setMaximumOuterSampling
"Accessor to the maximum sample size.
Parameters
----------
outerSampling : int
Maximum number of groups of terms in the probability simulation estimator."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getMaximumStandardDeviation
"Accessor to the maximum standard deviation.
Returns
-------
sigma : float, :math:`\\\\sigma > 0`
Maximum standard deviation of the estimator."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setMaximumStandardDeviation
"Accessor to the maximum standard deviation.
Parameters
----------
sigma : float, :math:`\\\\sigma > 0`
Maximum standard deviation of the estimator."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getResult
"Accessor to the results.
Returns
-------
results : :class:`~openturns.SimulationResult`
Structure containing all the results obtained after simulation and created
by the method :py:meth:`run`."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getEvent
"Accessor to the event.
Returns
-------
event : :class:`~openturns.Event`
Event we want to evaluate the probability."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::getVerbose
"Accessor to verbosity.
Returns
-------
verbosity_enabled : bool
If *True*, the computation is verbose. By default it is verbose."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setVerbose
"Accessor to verbosity.
Parameters
----------
verbosity_enabled : bool
If *True*, make the computation verbose. By default it is verbose."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::run
"Launch simulation.
Notes
-----
It launches the simulation and creates a :class:`~openturns.SimulationResult`,
structure containing all the results obtained after simulation.
It computes the probability of occurence of the given event by computing the
empirical mean of a sample of size at most *outerSampling * blockSize*,
this sample being built by blocks of size *blockSize*. It allows to use
efficiently the distribution of the computation as well as it allows to deal
with a sample size :math:`> 2^{32}` by a combination of *blockSize* and
*outerSampling*.
see also
--------
setBlockSize, setMaximumOuterSampling, ResourceMap, SimulationResult"
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::drawProbabilityConvergence
"Draw the probability convergence at a given level.
Parameters
----------
level : float, optional
The probability convergence is drawn at this given confidence length
*level*. By default *level* is 0.95.
Returns
-------
graph : a :class:`~openturns.Graph`
probability convergence graph"
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setProgressCallback
"Set up a progress callback.
Parameters
----------
callback : callable
Takes a float as argument as percentage of progress."
// ---------------------------------------------------------------------
%feature("docstring") OT::Simulation::setStopCallback
"Set up a stop callback.
Parameters
----------
callback : callable
Returns an int deciding whether to stop or continue."
|