This file is indexed.

/usr/include/openturns/swig/Simulation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
%feature("docstring") OT::Simulation
"Base class for sampling methods.

Available constructor:
    Simulation(*event, verbose=True, convergenceStrategy=ot.Compact()*)

Parameters
----------
event : :class:`~openturns.Event`
    The event we are computing the probability of.
verbose : bool
    If *True*, make the computation verbose.
convergenceStrategy : :class:`~openturns.HistoryStrategy`
    Storage strategy used to store the values of the probability estimator and
    its variance during the simulation algorithm.

Notes
-----
Base class for sampling methods, using the probability distribution of a random
vector :math:`\\\\vect{X}` to evaluate the failure probability:

.. math::

    P_f = \\\\int_{\\\\Rset^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\leq 0 \\\\}}f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}
        = \\\\Prob{g\\\\left( \\\\vect{X},\\\\vect{d} \\\\right) \\\\leq 0}

Here, :math:`\\\\vect{X}` is a random vector, :math:`\\\\vect{d}` a deterministic
vector, :math:`g(\\\\vect{X},\\\\vect{d})` the function known as *limit state function*
which enables the definition of the event
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, | \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`.
:math:`\\\\mathbf{1}_{ \\\\left\\\\{ g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0 \\\\right\\\\} }`
describes the indicator function equal to 1 if
:math:`g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0` and equal to 0 otherwise.

A Simulation object can be created only through its derived classes:

- :class:`~openturns.DirectionalSampling`

- :class:`~openturns.ImportanceSampling`,

- :class:`~openturns.LHS`,

- :class:`~openturns.MonteCarlo`,

- :class:`~openturns.QuasiMonteCarlo`,

- :class:`~openturns.PostAnalyticalControlledImportanceSampling`,

- :class:`~openturns.PostAnalyticalImportanceSampling`,

- :class:`~openturns.RandomizedLHS`,

- :class:`~openturns.RandomizedQuasiMonteCarlo`.

See also
--------
SimulationResult"

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getBlockSize
"Accessor to the block size.

Returns
-------
blockSize : int
    Number of terms in the probability simulation estimator grouped together.
    It is set by default to 1."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setBlockSize
"Accessor to the block size.

Parameters
----------
blockSize : int, :math:`blockSize \\\\geq 1`
    Number of terms in the probability simulation estimator grouped together.
    It is set by default to 1.

Notes
-----
For Monte Carlo, LHS and Importance Sampling methods, this allows to save space
while allowing multithreading, when available we recommend
to use the number of available CPUs; for the Directional Sampling, we recommend
to set it to 1."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getConvergenceStrategy
"Accessor to the convergence strategy.

Returns
-------
storage_strategy : :class:`~openturns.HistoryStrategy`
    Storage strategy used to store the values of the probability estimator
    and its variance during the simulation algorithm."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setConvergenceStrategy
"Accessor to the convergence strategy.

Parameters
----------
storage_strategy : :class:`~openturns.HistoryStrategy`
    Storage strategy used to store the values of the probability estimator
    and its variance during the simulation algorithm."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getMaximumCoefficientOfVariation
"Accessor to the maximum coefficient of variation.

Returns
-------
coefficient : float
    Maximum coefficient of variation of the simulated sample."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setMaximumCoefficientOfVariation
"Accessor to the maximum coefficient of variation.

Parameters
----------
coefficient : float
    Maximum coefficient of variation of the simulated sample."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getMaximumOuterSampling
"Accessor to the maximum sample size.

Returns
-------
outerSampling : int
    Maximum number of groups of terms in the probability simulation estimator."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setMaximumOuterSampling
"Accessor to the maximum sample size.

Parameters
----------
outerSampling : int
    Maximum number of groups of terms in the probability simulation estimator."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getMaximumStandardDeviation
"Accessor to the maximum standard deviation.

Returns
-------
sigma : float, :math:`\\\\sigma > 0`
    Maximum standard deviation of the estimator."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setMaximumStandardDeviation
"Accessor to the maximum standard deviation.

Parameters
----------
sigma : float, :math:`\\\\sigma > 0`
    Maximum standard deviation of the estimator."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getResult
"Accessor to the results.

Returns
-------
results : :class:`~openturns.SimulationResult`
    Structure containing all the results obtained after simulation and created
    by the method :py:meth:`run`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getEvent
"Accessor to the event.

Returns
-------
event : :class:`~openturns.Event`
    Event we want to evaluate the probability."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::getVerbose
"Accessor to verbosity.

Returns
-------
verbosity_enabled : bool
    If *True*, the computation is verbose. By default it is verbose."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setVerbose
"Accessor to verbosity.

Parameters
----------
verbosity_enabled : bool
    If *True*, make the computation verbose. By default it is verbose."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::run
"Launch simulation.

Notes
-----
It launches the simulation and creates a :class:`~openturns.SimulationResult`,
structure containing all the results obtained after simulation.
It computes the probability of occurence of the given event by computing the
empirical mean of a sample of size at most *outerSampling * blockSize*,
this sample being built by blocks of size *blockSize*. It allows to use
efficiently the distribution of the computation as well as it allows to deal
with a sample size :math:`> 2^{32}` by a combination of *blockSize* and
*outerSampling*.

see also
--------
setBlockSize, setMaximumOuterSampling, ResourceMap, SimulationResult"

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::drawProbabilityConvergence
"Draw the probability convergence at a given level.

Parameters
----------
level : float, optional
    The probability convergence is drawn at this given confidence length
    *level*. By default *level* is 0.95.

Returns
-------
graph : a :class:`~openturns.Graph`
    probability convergence graph"
// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setProgressCallback
"Set up a progress callback.

Parameters
----------
callback : callable
    Takes a float as argument as percentage of progress."

// ---------------------------------------------------------------------

%feature("docstring") OT::Simulation::setStopCallback
"Set up a stop callback.

Parameters
----------
callback : callable
    Returns an int deciding whether to stop or continue."