/usr/include/openturns/swig/SORM_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | %feature("docstring") OT::SORM
"Second Order Reliability Method (SORM).
Available constructors:
SORM(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : sequence of float
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
See :class:`~openturns.Analytical` for the description of the first steps of
the SORM analysis.
The Second Order Reliability Method (SORM) consists in approximating the limit
state surface in U-space at the design point :math:`P^*` by a quadratic
surface. SORM is usually more accurate than FORM e.g. in case when the event
boundary is highly curved.
Let us denote by :math:`n` the dimension of the random vector :math:`\\\\vect{X}`
and :math:`(\\\\kappa_i)_{1 \\\\leq i \\\\leq n-1}` the :math:`n-1` main curvatures of
the limit state function at the design point in the standard space.
Several approximations of the failure probability :math:`P_f` are available in
the standard version of OpenTURNS, detailed here in the case where the origin
of the standard space does not belong to the failure domain :
- Breitung's formula :
.. _Breitung_formula:
.. math ::
P_{Breitung} = E(-\\\\beta_{HL})\\\\prod_{i=1}^{n-1} \\\\frac{1}{\\\\sqrt{1 + \\\\beta_{HL}\\\\kappa_i}}
:math:`E` the marginal cumulative density function of the spherical
distributions in the standard space and :math:`\\\\beta_{HL}` is the Hasofer-Lind
reliability index, defined as the distance of the design point
:math:`\\\\vect{u}^*` to the origin of the standard space.
- Hohen Bichler's formula is an approximation of the previous equation :
.. _Hohenbichler_formula:
.. math ::
\\\\displaystyle P_{Hohenbichler} = \\\\Phi(-\\\\beta_{HL})
\\\\prod_{i=1}^{n-1} \\\\left(
1 + \\\\frac{\\\\phi(\\\\beta_{HL})}{\\\\Phi(-\\\\beta_{HL})}\\\\kappa_i
\\\\right) ^{-1/2}
where :math:`\\\\Phi` is the cumulative distribution function of the
standard 1D normal distribution and :math:`\\\\phi` is the standard Gaussian
probability density function.
- Tvedt's formula :
.. _Tvedt_formula:
.. math ::
\\\\left\\\\{
\\\\begin{array}{lcl}
\\\\displaystyle P_{Tvedt} & = & A_1 + A_2 + A_3 \\\\\\\\
\\\\displaystyle A_1 & = & \\\\displaystyle
\\\\Phi(-\\\\beta_{HL}) \\\\prod_{i=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2}\\\\\\\\
\\\\displaystyle A_2 & = & \\\\displaystyle
\\\\left[ \\\\beta_{HL} \\\\Phi(-\\\\beta_{HL}) - \\\\phi(\\\\beta_{HL}) \\\\right]
\\\\left[ \\\\prod_{j=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2} -
\\\\prod_{j=1}^{N-1} \\\\left( 1 + (1 + \\\\beta_{HL}) \\\\kappa_i \\\\right) ^{-1/2}
\\\\right ] \\\\\\\\
\\\\displaystyle A_3 & = & \\\\displaystyle (1 + \\\\beta_{HL})
\\\\left[ \\\\beta_{HL} \\\\Phi(-\\\\beta_{HL}) - \\\\phi(\\\\beta_{HL}) \\\\right]
\\\\left[ \\\\prod_{j=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2} -
{\\\\cR}e \\\\left( \\\\prod_{j=1}^{N-1} \\\\left( 1 + (i + \\\\beta_{HL}) \\\\kappa_j \\\\right) ^{-1/2}
\\\\right)\\\\right ]
\\\\end{array}
\\\\right.
where :math:`{\\\\cR}e(z)` is the real part of the complex number :math:`z` and
:math:`i` the complex number such that :math:`i^2 = -1`.
The evaluation of the failure probability is stored in the data structure
:class:`~openturns.SORMResult` recoverable with the :meth:`getResult` method.
See also
--------
Analytical, AnalyticalResult, FORM, StrongMaximumTest, SORMResult
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> event = ot.Event(output, ot.Less(), -3.0)
>>> # We create an OptimizationAlgorithm algorithm
>>> solver = ot.AbdoRackwitz()
>>> algo = ot.SORM(solver, event, [50.0, 1.0, 10.0, 5.0])
>>> algo.run()
>>> result = algo.getResult()"
// ---------------------------------------------------------------------
%feature("docstring") OT::SORM::getResult
"Accessor to the result of SORM.
Returns
-------
result : :class:`~openturns.SORMResult`
Structure containing all the results of the SORM analysis."
// ---------------------------------------------------------------------
%feature("docstring") OT::SORM::setResult
"Accessor to the result of SORM.
Parameters
----------
result : :class:`~openturns.SORMResult`
Structure containing all the results of the SORM analysis."
// ---------------------------------------------------------------------
%feature("docstring") OT::SORM::run
"Evaluate the failure probability.
Notes
-----
Evaluate the failure probability and create a :class:`~openturns.SORMResult`,
the structure result which is accessible with the method :meth:`getResult`."
|