This file is indexed.

/usr/include/openturns/swig/SORM_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
%feature("docstring") OT::SORM
"Second Order Reliability Method (SORM).

Available constructors:
    SORM(*nearestPointAlgorithm, event, physicalStartingPoint*)

Parameters
----------
nearestPointAlgorithm : :class:`~openturns.OptimizationAlgorithm`
    Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
    Failure event.
physicalStartingPoint : sequence of float
    Starting point of the optimization algorithm, declared in the physical
    space.

Notes
-----
See :class:`~openturns.Analytical` for the description of the first steps of
the SORM analysis.

The Second Order Reliability Method (SORM) consists in approximating the limit
state surface in U-space at the design point :math:`P^*` by a quadratic
surface. SORM is usually more accurate than FORM e.g. in case when the event
boundary is highly curved.

Let us denote by :math:`n` the dimension of the random vector :math:`\\\\vect{X}`
and :math:`(\\\\kappa_i)_{1 \\\\leq i \\\\leq n-1}` the :math:`n-1` main curvatures of
the limit state function at the design point in the standard space.

Several approximations of the failure probability :math:`P_f` are available in
the standard version of OpenTURNS, detailed here in the case where the origin
of the standard space does not belong to the failure domain :

- Breitung's formula :

  .. _Breitung_formula:

  .. math ::

      P_{Breitung} = E(-\\\\beta_{HL})\\\\prod_{i=1}^{n-1} \\\\frac{1}{\\\\sqrt{1 + \\\\beta_{HL}\\\\kappa_i}}

  :math:`E` the marginal cumulative density function of the spherical
  distributions in the standard space and :math:`\\\\beta_{HL}` is the Hasofer-Lind
  reliability index, defined as the distance of the design point
  :math:`\\\\vect{u}^*` to the origin of the standard space.

- Hohen Bichler's formula is an approximation of the previous equation :

  .. _Hohenbichler_formula:

  .. math ::

      \\\\displaystyle P_{Hohenbichler} = \\\\Phi(-\\\\beta_{HL})
       \\\\prod_{i=1}^{n-1} \\\\left(
                         1 + \\\\frac{\\\\phi(\\\\beta_{HL})}{\\\\Phi(-\\\\beta_{HL})}\\\\kappa_i
                         \\\\right) ^{-1/2}

  where :math:`\\\\Phi` is the cumulative distribution function of the
  standard 1D normal distribution and :math:`\\\\phi` is the standard Gaussian
  probability density function.

- Tvedt's formula :

  .. _Tvedt_formula:

  .. math ::

      \\\\left\\\\{
        \\\\begin{array}{lcl}
          \\\\displaystyle P_{Tvedt} & = & A_1 + A_2 + A_3 \\\\\\\\
          \\\\displaystyle A_1 & = & \\\\displaystyle
            \\\\Phi(-\\\\beta_{HL}) \\\\prod_{i=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2}\\\\\\\\
          \\\\displaystyle A_2 & = & \\\\displaystyle
            \\\\left[ \\\\beta_{HL} \\\\Phi(-\\\\beta_{HL}) - \\\\phi(\\\\beta_{HL}) \\\\right]
            \\\\left[ \\\\prod_{j=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2} -
                   \\\\prod_{j=1}^{N-1} \\\\left( 1 + (1 + \\\\beta_{HL}) \\\\kappa_i \\\\right) ^{-1/2}
            \\\\right ] \\\\\\\\
          \\\\displaystyle A_3 & = & \\\\displaystyle (1 + \\\\beta_{HL})
            \\\\left[ \\\\beta_{HL} \\\\Phi(-\\\\beta_{HL}) - \\\\phi(\\\\beta_{HL}) \\\\right]
            \\\\left[ \\\\prod_{j=1}^{N-1} \\\\left( 1 + \\\\beta_{HL} \\\\kappa_i \\\\right) ^{-1/2} -
                   {\\\\cR}e \\\\left( \\\\prod_{j=1}^{N-1} \\\\left( 1 + (i + \\\\beta_{HL}) \\\\kappa_j \\\\right) ^{-1/2}
            \\\\right)\\\\right ]
        \\\\end{array}
      \\\\right.

  where :math:`{\\\\cR}e(z)` is the real part of the complex number :math:`z` and
  :math:`i` the complex number such that :math:`i^2 = -1`.

The evaluation of the failure probability is stored in the data structure
:class:`~openturns.SORMResult` recoverable with the :meth:`getResult` method.

See also
--------
Analytical, AnalyticalResult, FORM, StrongMaximumTest, SORMResult

Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> event = ot.Event(output, ot.Less(), -3.0)
>>> # We create an OptimizationAlgorithm algorithm
>>> solver = ot.AbdoRackwitz()
>>> algo = ot.SORM(solver, event, [50.0, 1.0, 10.0, 5.0])
>>> algo.run()
>>> result = algo.getResult()"

// ---------------------------------------------------------------------

%feature("docstring") OT::SORM::getResult
"Accessor to the result of SORM.

Returns
-------
result : :class:`~openturns.SORMResult`
    Structure containing all the results of the SORM analysis."

// ---------------------------------------------------------------------

%feature("docstring") OT::SORM::setResult
"Accessor to the result of SORM.

Parameters
----------
result : :class:`~openturns.SORMResult`
    Structure containing all the results of the SORM analysis."

// ---------------------------------------------------------------------

%feature("docstring") OT::SORM::run
"Evaluate the failure probability.

Notes
-----
Evaluate the failure probability and create a :class:`~openturns.SORMResult`,
the structure result which is accessible with the method :meth:`getResult`."