This file is indexed.

/usr/include/openturns/swig/RankMCovarianceModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
%feature("docstring") OT::RankMCovarianceModel
"Covariance function of finite rank.

Available constructors:
    RankMCovarianceModel(*spatialDimension*)

    RankMCovarianceModel(*variance, basis*)

    RankMCovarianceModel(*covariance, basis*)

Parameters
----------
variance : sequence of float
    The marginal variances of the coefficients of the basis.
covariance : :class:`~openturns.CovarianceMatrix`
    The covariance of the coefficients of the basis.

Notes
-----
Let :math:`X` be a stochastic process defined by:

.. math::

   X(\\\\omega,\\\\vect{t})=\\\\sum_{i=1}^M\\\\xi_i(\\\\omega)\\\\phi_i(\\\\vect{t}), \\\\quad \\\\forall \\\\omega \\\\in \\\\Omega, \\\\vect{t} \\\\in \\\\cD

where :math:`(\\\\xi_1,\\\\dots,\\\\xi_M)` is a random vector of dimension :math:`M` and :math:`(\\\\phi_i)_{i=1,\\\\dots,M}` are the :math:`M` first elements of a given basis.
   
Its covariance function, a *rank-M* covariance function, is given by:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\sum_{i=1}^M \\\\sum_{j=1}^M \\\\Sigma_{ij}\\\\phi_i(\\\\vect{s})\\\\Tr{\\\\phi_j(\\\\vect{t})}, \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

where :math:`\\\\mat{\\\\Sigma}` is the covariance matrix of :math:`(\\\\xi_1,\\\\dots,\\\\xi_M)`.

When :math:`\\\\mat{\\\\Sigma}` is diagonal, it reduces to:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\sum_{i=1}^M \\\\sigma_i^2\\\\phi_i(\\\\vect{s})\\\\Tr{\\\\phi_i(\\\\vect{t})}, \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

where :math:`\\\\sigma_i^2` is the variance of :math:`\\\\xi_i`.

The name *rank-M* is here to recall that the discretization of such a model will always lead to a covariance matrix of rank *at most* :math:`M`.

Examples
--------

>>> import openturns as ot
>>> variance = [1.0, 2.0]
>>> basis = ot.LinearBasisFactory().build()
>>> myCovarianceModel = ot.RankMCovarianceModel(variance, basis)
>>> covariance = ot.CovarianceMatrix(2, [1.0, 0.5, 0.5, 2.0])
>>> myCovarianceModel = ot.RankMCovarianceModel(covariance, basis)
"

// ---------------------------------------------------------------------

%feature("docstring") OT::RankMCovarianceModel::getCovariance
"Covariance accessor.

Returns
-------
covariance : :class:`~openturns.CovarianceMatrix`
    Covariance matrix of :math:`(\\\\xi_1,\\\\dots,\\\\xi_M)`. Its dimension is zero if the coefficients are uncorrelated, in which case the marginal variances are given by *getVariance()*.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::RankMCovarianceModel::getVariance
"Variance accessor.

Returns
-------
variance : :class:`~openturns.Point`
    Vector of marginal variances of :math:`(\\\\xi_1,\\\\dots,\\\\xi_M)`. Its dimension is zero if the coefficients are correlated, in which case the covariance matrix is given by *getCovariance()*.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::RankMCovarianceModel::getBasis
"Basis accessor.

Returns
-------
basis : :class:`~openturns.Basis`
    Basis to which the functions :math:`(\\\\phi_i)_{i=1,\\\\dots,M}` belong.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::RankMCovarianceModel::getFunctions
"Function collection accessor.

Returns
-------
functions : :class:`~openturns.FunctionCollection`
    The collection of functions :math:`(\\\\phi_i)_{i=1,\\\\dots,M}` defining the covariance model.
"