This file is indexed.

/usr/include/openturns/swig/RandomWalkMetropolisHastings_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%feature("docstring") OT::RandomWalkMetropolisHastings
"Random Walk Metropolis-Hastings method.

Available constructor:
    RandomWalkMetropolisHastings(*prior, conditional, observations, initialState, proposal*)

    RandomWalkMetropolisHastings(*prior, conditional, model, parameters, observations, initialState, proposal*)

Parameters
----------
prior : :class:`~openturns.Distribution`
    Prior distribution of the parameters of the underlying Bayesian statistical
    model.
conditional : :class:`~openturns.Distribution`
    Required distribution to define the likelihood of the underlying Bayesian
    statistical model.
model : :class:`~openturns.Function`
    Function required to define the likelihood.
observations : 2-d sequence of float
    Observations required to define the likelihood.
initialState : sequence of float
    Initial state of the Monte-Carlo Markov chain on which the Sampler is
    based.
parameters : 2-d sequence of float
    Parameters of the model to be fixed.
proposal : list of :class:`~openturns.Distribution`
    Distributions from which the transition kernels of the
    :class:`~openturns.MCMC` are defined, as explained hereafter. In the
    following of this paragraph, :math:`\\\\delta \\\\sim p_j` means that the
    realization :math:`\\\\delta` is obtained according to the :math:`j^{th}`
    Distribution of the list *proposal* of size :math:`d`. The underlying
    MCMC algorithm is a Metropolis-Hastings one which draws candidates (for the
    next state of the chain) using a random walk: from the current state
    :math:`\\\\vect{\\\\theta}^k`, the candidate :math:`\\\\vect{c}^k` for
    :math:`\\\\vect{\\\\theta}^{k+1}` can be expressed as
    :math:`\\\\vect{c}^k = \\\\vect{\\\\theta}^k +\\\\vect{\\\\delta}^k` where the
    distribution of :math:`\\\\vect{\\\\delta}^k` does not depend on
    :math:`\\\\vect{\\\\theta}^k`. More precisely, here, during the :math:`k^{th}`
    Metropolis-Hastings iteration, only the :math:`j^{th}` component
    :math:`\\\\delta_j^k` of :math:`\\\\vect{\\\\delta}^k` , with :math:`j=k \\\\mod d`, is
    not zero and :math:`\\\\delta_j^k = \\\\lambda_j^k \\\\delta^k` where
    :math:`\\\\lambda_j^k` is a deterministic scalar *calibration* coefficient and
    where :math:`\\\\delta^k \\\\sim p_j`. Moreover, :math:`\\\\lambda_j^k = 1` by default,
    but adaptive strategy based on the acceptance rate of each component can be
    defined using the method :meth:`setCalibrationStrategyPerComponent`.

Notes
-----
A RandomWalkMetropolisHastings enables to carry out :class:`~openturns.MCMC`
sampling according to the preceding statements. It is important to note that
sampling one new realization comes to carrying out :math:`d` Metropolis-
Hastings iterations (such as described above): all of the components of the new
realization can differ from the corresponding components of the previous
realization. Besides, the burn-in and thinning parameters do not take into
consideration the number of MCMC iterations indeed, but the number of sampled
realizations.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> chainDim = 3
>>> # Observations
>>> obsDim = 1
>>> obsSize = 10
>>> y = [-9.50794871493506, -3.83296694500105, -2.44545713047953,
...      0.0803625289211318, 1.01898069723583, 0.661725805623086,
...      -1.57581204592385, -2.95308465670895, -8.8878164296758,
...      -13.0812290405651]
>>> y_obs = ot.Sample(y, obsDim)
>>> # Parameters
>>> p = ot.Sample(obsSize, chainDim)
>>> for i in range(obsSize):
...     for j in range(chainDim):
...         p[i, j] = (-2 + 5.0 * i / 9.0) ** j
>>> # Model
>>> fullModel = ot.SymbolicFunction(
...          ['p1', 'p2', 'p3', 'x1', 'x2', 'x3'],
...          ['p1*x1+p2*x2+p3*x3', '1.0'])
>>> parametersSet = range(chainDim)
>>> parametersValue = [0.0] * len(parametersSet)
>>> model = ot.ParametricFunction(fullModel, parametersSet, parametersValue)
>>> # Calibration parameters
>>> calibrationColl = [ot.CalibrationStrategy()]*chainDim
>>> # Proposal distribution
>>> proposalColl = [ot.Uniform(-1.0, 1.0)]*chainDim
>>> # Prior distribution
>>> sigma0 = [10.0]*chainDim
>>> #  Covariance matrix
>>> Q0_inv = ot.CorrelationMatrix(chainDim)
>>> for i in range(chainDim): 
...     Q0_inv[i, i] = sigma0[i] * sigma0[i]
>>> mu0 = [0.0]*chainDim
>>> #  x0 ~ N(mu0, sigma0)
>>> prior = ot.Normal(mu0, Q0_inv)
>>> # Conditional distribution y~N(z, 1.0)
>>> conditional = ot.Normal()
>>> # Create a metropolis-hastings sampler
>>> # prior =a distribution of dimension chainDim, the a priori distribution of the parameter
>>> # conditional =a distribution of dimension 1, the observation error on the output
>>> # model =the link between the parameters and the output
>>> # y_obs =noisy observations of the output
>>> # mu0 =starting point of the chain
>>> sampler = ot.RandomWalkMetropolisHastings(
...     prior, conditional, model, p, y_obs, mu0, proposalColl)
>>> sampler.setCalibrationStrategyPerComponent(calibrationColl)
>>> sampler.setBurnIn(200)
>>> sampler.setThinning(10)
>>> # Get a realization
>>> print(sampler.getRealization())
[1.22816,1.0049,-1.99008]"

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::getAcceptanceRate
"Get acceptance rate.

Returns
-------
acceptanceRate : :class:`~openturns.Point` of dimension :math:`d`
    Sequence whose the :math:`j^{th}` component corresponds to the acceptance
    rate of the candidates :math:`\\\\vect{c}^k` obtained from a state
    :math:`\\\\vect{\\\\theta}^k` by only changing its :math:`j^{th}` component, that
    is to the acceptance rate only relative to the :math:`k^{th}` MCMC
    iterations such that :math:`k \\\\mod d=j` (see the paragraph dedicated to the
    constructors of the class above). These are global acceptance rates over
    all the MCMC iterations performed."

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::getCalibrationStrategyPerComponent
"Get the calibration strategy per component.

Returns
-------
strategy : list of :class:`~openturns.CalibrationStrategy`
    A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
    :math:`strategy[j]` defines whether and how the :math:`\\\\lambda_j^k` (see the
    paragraph dedicated to the constructors of the class above) are rescaled,
    on the basis of the last :math:`j^{th}` component acceptance rate
    :math:`\\\\rho_j^k` . The *calibration* coefficients are rescaled every
    :math:`q\\\\times d` MCMC iterations with
    :math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
    acceptances or refusals of the last :math:`q` candidates obtained by only
    changing the :math:`j^{th}` component of the current state:
    :math:`\\\\lambda_j^k = \\\\Phi_j (\\\\rho_j^k)\\\\lambda_j^{k-qd}` where
    :math:`\\\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`."

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::setCalibrationStrategyPerComponent
"Set the calibration strategy per component.

Parameters
----------
strategy : list of :class:`~openturns.CalibrationStrategy`
    A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
    :math:`strategy[j]` defines whether and how the :math:`\\\\lambda_j^k` (see the
    paragraph dedicated to the constructors of the class above) are rescaled,
    on the basis of the last :math:`j^{th}` component acceptance rate
    :math:`\\\\rho_j^k` . The *calibration* coefficients are rescaled every
    :math:`q\\\\times d` MCMC iterations with
    :math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
    acceptances or refusals of the last :math:`q` candidates obtained by only
    changing the :math:`j^{th}` component of the current state:
    :math:`\\\\lambda_j^k = \\\\Phi_j (\\\\rho_j^k)\\\\lambda_j^{k-qd}` where
    :math:`\\\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`."

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::setCalibrationStrategy
"Set the calibration strategy.

Parameters
----------
strategy : :class:`~openturns.CalibrationStrategy`
    Same strategy applied for each component :math:`\\\\lambda_j^k`.

See also
--------
setCalibrationStrategyPerComponent"

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::getProposal
"Get the proposal.

Returns
-------
proposal : list of :class:`~openturns.Distribution`
    The :math:`d`-tuple of Distributions :math:`p_j (1 \\\\leq j \\\\leq d)` from
    which the transition kernels of the random walk Metropolis-Hastings
    algorithm are defined; look at the paragraph dedicated to the constructors
    of the class above."

// ---------------------------------------------------------------------

%feature("docstring") OT::RandomWalkMetropolisHastings::setProposal
"Set the proposal.

Parameters
----------
proposal : list of :class:`~openturns.Distribution`
    The :math:`d`-tuple of Distributions :math:`p_j (1 \\\\leq j \\\\leq d)` from
    which the transition kernels of the random walk Metropolis-Hastings
    algorithm are defined; look at the paragraph dedicated to the constructors
    of the class above."