This file is indexed.

/usr/include/openturns/swig/RandomVector.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// SWIG file RandomVector.i

%{
#include "openturns/RandomVector.hxx"
#include "openturns/PythonRandomVectorImplementation.hxx"
%}

%include RandomVector_doc.i

%pythoncode %{
class PythonRandomVector(object):
    """
    Allow to overload RandomVector from Python.

    Parameters
    ----------
    dim : positive int
        Vector dimension.
        Default is 0.

    See also
    --------
    RandomVector

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)

    Overload RandomVector from Python:

    >>> class RVEC(ot.PythonRandomVector):
    ...    def __init__(self):
    ...        super(RVEC, self).__init__(2)
    ...        self.setDescription(['R', 'S'])
    ...
    ...    def getRealization(self):
    ...        X = [ot.RandomGenerator.Generate(), 2 + ot.RandomGenerator.Generate()]
    ...        return X
    ...
    ...    def getSample(self, size):
    ...        X = []
    ...        for i in range(size):
    ...            X.append([ot.RandomGenerator.Generate(), 2 + ot.RandomGenerator.Generate()])
    ...        return X
    ...
    ...    def getMean(self):
    ...        return [0.5, 2.5]
    ...
    ...    def getCovariance(self):
    ...        return [[0.0833333, 0.], [0., 0.0833333]]

    Use the overloaded class:

    >>> R = RVEC()
    >>> # Instance creation
    >>> myRV = ot.RandomVector(R)
    >>> # Realization
    >>> print(myRV.getRealization())
    [0.629877,2.88281]
    >>> # Sample
    >>> print(myRV.getSample(5))
    0 : [ 0.135276  2.0325    ]
    1 : [ 0.347057  2.96942   ]
    2 : [ 0.92068   2.50304   ]
    3 : [ 0.0632061 2.29276   ]
    4 : [ 0.714382  2.38336   ]
    >>> # Mean
    >>> print(myRV.getMean())
    [0.5,2.5]
    >>> # Covariance
    >>> print(myRV.getCovariance())
    [[ 0.0833333 0         ]
     [ 0         0.0833333 ]]

    """
    def __init__(self, dim=0):
        # Warning: these names are used in PythonRandomVectorImplementation class. Synchronize the files if changed
        self.__dim = dim
        self.__desc = list(map(lambda i: 'x' + str(i), range(dim)))

    def __str__(self):
        return 'PythonRandomVector -> %s #%d' % (self.__desc, self.__dim)

    def __repr__(self):
        return self.__str__()

    def getDimension(self):
        """
        Get the dimension.

        Returns
        -------
        dim : positive int
            Dimension of the RandomVector.
        """
        return self.__dim

    def setDescription(self, desc):
        """
        Set the description.

        Parameters
        ----------
        desc : sequence of str
            *desc* describes the components of the RandomVector.
            Its size must be equal to the dimension of the RandomVector.
        """
        if (len(desc) != self.__dim):
            raise ValueError('Description size does NOT match dimension')
        self.__desc = desc

    def getDescription(self):
        """
        Get the description.

        Returns
        -------
        desc : :class:`~openturns.Description`
            *desc* describes the components of the RandomVector.
        """
        return self.__desc

    def getRealization(self):
        """
        Get a realization of the random vector.

        Returns
        -------
        realization : :class:`~openturns.Point`
            Sequence of values randomly determined from the RandomVector definition.
        """
        raise RuntimeError('You must define a method getRealization() -> X, where X is a Point')

    def getMean(self):
        """
        Get the mean.

        Returns
        -------
        mean : :class:`~openturns.Point`
            Mean of the RandomVector.
        """
        raise RuntimeError('You must define a method mean -> X, where X is a Point')

    def getCovariance(self):
        """
        Get the covariance.

        Returns
        -------
        covariance : :class:`~openturns.CovarianceMatrix`
            Covariance of the RandomVector.
        """
        raise RuntimeError('You must define a method var -> M, where M is a CovarianceMatrix')

class SciPyRandomVector(PythonRandomVector):
    """
    Build a PythonRandomVector from a scipy distribution.

    Parameters
    ----------
    dist : a scipy.stats distribution
        the distribution to wrap
    """
    def __init__(self, dist):
        super(SciPyRandomVector, self).__init__(1)
        if dist.__class__.__name__ != 'rv_frozen':
            raise TypeError('Argument is not a scipy distribution')
        self._dist = dist

    def getRealization(self):
        rvs = self._dist.rvs()
        return [rvs]

    def getSample(self, size):
        rvs = self._dist.rvs(size)
        return rvs.reshape(size, 1)

    def getMean(self):
        mean = float(self._dist.stats('m'))
        return [mean]

    def getCovariance(self):
        var = float(self._dist.stats('v'))
        return [[var]]

%}

OTTypedInterfaceObjectHelper(RandomVector)

%include openturns/RandomVector.hxx
namespace OT { %extend RandomVector { 

RandomVector(const RandomVector & other)
{
  return new OT::RandomVector(other);
} 

RandomVector(PyObject * pyObj)
{
  return new OT::RandomVector( new OT::PythonRandomVectorImplementation(pyObj) );
} 

} // class RandomVector
} // namespace OT