This file is indexed.

/usr/include/openturns/swig/QuasiMonteCarlo_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
%feature("docstring") OT::QuasiMonteCarlo
"Quasi-Monte Carlo method.

Available constructors:
    QuasiMonteCarlo(*event=ot.Event(), lowDiscrepancySequence=ot.SobolSequence()*)

Parameters
----------
event : :class:`~openturns.Event`
    Event we are computing the probability of.
lowDiscrepancySequence : :class:`~openturns.LowDiscrepancySequence`
    Low-discrepancy sequence used to generate the samples.

Notes
-----
Using the probability distribution of a random vector :math:`\\\\vect{X}`, we seek
to evaluate the following probability:

.. math::

    P_f = \\\\int_{\\\\Rset^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\leq 0 \\\\}}f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}
        = \\\\Prob{g\\\\left( \\\\vect{X},\\\\vect{d} \\\\right) \\\\leq 0}

Here, :math:`\\\\vect{X}` is a random vector, :math:`\\\\vect{d}` a deterministic
vector, :math:`g(\\\\vect{X},\\\\vect{d})` the function known as *limit state function*
which enables the definition of the event
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, | \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`.
:math:`\\\\mathbf{1}_{ \\\\left\\\\{ g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0 \\\\right\\\\} }`
describes the indicator function equal to 1 if
:math:`g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0` and equal to 0 otherwise.

Quasi-Monte Carlo method approximates the probability of failure using low
:class:`discrepancy sequences <openturns.LowDiscrepancySequence>`
:math:`\\\\{\\\\vect{x}_1, ..., \\\\vect{x}_N\\\\}` instead of randomly generated
sequences, as follows:

.. math::

    P_f \\\\approx \\\\frac{1}{N}\\\\,\\\\sum_{i=1}^N \\\\mathbf{1}_{\\\\cD_f}(\\\\ux_i) f(\\\\ux_i).

In general, the integral of a function :math:`f` on :math:`\\\\Delta = [0,1]^s`
can be approximated by using some low discrepancy sequence
:math:`\\\\{\\\\vect{x}_1, \\\\hdots, \\\\vect{x}_N\\\\}`  as follows:

.. math::

    \\\\int_{\\\\Delta} f(\\\\vect{u})\\\\di{\\\\vect{u}} \\\\approx \\\\frac{1}{N}\\\\,\\\\sum_{i=1}^N f(\\\\vect{x}_i).

The low discrepancy sequence is generated on :math:`\\\\Delta` according to the
Lebesgue measure then may be transformed to any measure :math:`\\\\mu` thanks to
the inverse CDF technique in order to approximate the integral:

.. math::

    \\\\int_{\\\\Rset^s} f(\\\\vect{u})\\\\di{\\\\vect{u}} \\\\approx \\\\frac{1}{N}\\\\,\\\\sum_{i=1}^N f(\\\\vect{x}_i)

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> # We create a 'usual' RandomVector from the Distribution
>>> vect = ot.RandomVector(myDistribution)
>>> # We create a composite random vector
>>> output = ot.RandomVector(myFunction, vect)
>>> # We create an Event from this RandomVector
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create a QuasiMonteCarlo algorithm
>>> myAlgo = ot.QuasiMonteCarlo(myEvent)
>>> myAlgo.setMaximumOuterSampling(50)
>>> myAlgo.setBlockSize(4)
>>> myAlgo.setMaximumCoefficientOfVariation(0.1)
>>> # Perform the simulation
>>> myAlgo.run()
>>> print('Probability estimate=%.6f' % myAlgo.getResult().getProbabilityEstimate())
Probability estimate=0.125000"