This file is indexed.

/usr/include/openturns/swig/ProjectionStrategyImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
%define OT_ProjectionStrategy_doc
"Base class for the evaluation strategies of the approximation coefficients.

Available constructors:
    ProjectionStrategy(*projectionStrategy*)

Parameters
----------
projectionStrategy : :class:`~openturns.ProjectionStrategy`
    A projection strategy which is a :class:`~openturns.LeastSquaresStrategy` or
    an :class:`~openturns.IntegrationStrategy`.

See also
--------
FunctionalChaosAlgorithm, LeastSquaresStrategy, IntegrationStrategy

Notes
-----
Consider :math:`\\\\vect{Y} = g(\\\\vect{X})` with :math:`g: \\\\Rset^d \\\\rightarrow \\\\Rset^p`,
:math:`\\\\vect{X} \\\\sim \\\\cL_{\\\\vect{X}}` and :math:`\\\\vect{Y}` with finite variance:
:math:`g\\\\in L_{\\\\cL_{\\\\vect{X}}}^2(\\\\Rset^d, \\\\Rset^p)`.

The functional chaos  expansion approximates :math:`\\\\vect{Y}` using an isoprobabilistic 
transformation *T* and an orthonormal multivariate basis :math:`(\\\\Psi_k)_{k \\\\in \\\\Nset}` 
of :math:`L^2_{\\\\mu}(\\\\Rset^d,\\\\Rset)`. See :class:`~openturns.FunctionalChaosAlgorithm` 
to get more details. 

The meta model of :math:`g`, based on the functional chaos decomposition of 
:math:`f = g \\\\circ T^{-1}` writes:

.. math::

    \\\\tilde{g} = \\\\sum_{k \\\\in K} \\\\vect{\\\\alpha}_k \\\\Psi_k  \\\\circ T

where *K* is a non empty finite set of indices, whose cardinality is denoted by *P*.

We detail the case where :math:`p=1`.

The vector  :math:`\\\\vect{\\\\alpha} = (\\\\alpha_k)_{k \\\\in K}`  is  equivalently defined by:

.. math::
    :label: defArgMin

    \\\\vect{\\\\alpha} = \\\\argmin_{\\\\vect{\\\\alpha} \\\\in \\\\Rset^K} \\\\Expect{ \\\\left( g \\\\circ T^{-1}(\\\\vect{Z}) -  \\\\sum_{k \\\\in K} \\\\alpha_k \\\\Psi_k (\\\\vect{Z})\\\\right)^2 }

and:

.. math::
    :label: defEsp

    \\\\alpha_k =  <g \\\\circ T^{-1}(\\\\vect{Z}), \\\\Psi_k (\\\\vect{Z})>_{\\\\mu} = \\\\Expect{  g \\\\circ T^{-1}(\\\\vect{Z}) \\\\Psi_k (\\\\vect{Z}) }

where :math:`\\\\vect{Z} = T(\\\\vect{X})` and the mean :math:`\\\\Expect{.}` is evaluated with respect to the measure :math:`\\\\mu`.

It corresponds to two points of view: 
   
    - relation :eq:`defArgMin`  means that the coefficients 
      :math:`(\\\\alpha_k)_{k \\\\in K}` minimize the quadratic error between  the model and 
      the polynomial approximation. Use :class:`~openturns.LeastSquaresStrategy`.

    - relation :eq:`defEsp` means that :math:`\\\\alpha_k` is the scalar product of the 
      model with the *k-th* element of the orthonormal basis :math:`(\\\\Psi_k)_{k \\\\in \\\\Nset}`.
      Use :class:`~openturns.IntegrationStrategy`.

In both cases, the mean :math:`\\\\Expect{.}` is approximated by a linear quadrature formula:

.. math::
    :label: approxEsp

    \\\\Expect{ f(\\\\vect{Z})} \\\\simeq \\\\sum_{i \\\\in I} \\\\omega_i f(\\\\Xi_i)

where *f* is a function in :math:`L^1(\\\\mu)`. 

In the approximation :eq:`approxEsp`, the set *I*, the points :math:`(\\\\Xi_i)_{i \\\\in I}` 
and the weights :math:`(\\\\omega_i)_{i \\\\in I}` are evaluated from different methods 
implemented in OpenTURNS in the :class:`~openturns.WeightedExperiment`.

The convergence criterion used to evaluate the coefficients is based on the residual value 
defined in the :class:`~openturns.FunctionalChaosAlgorithm`."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation
OT_ProjectionStrategy_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getCoefficients_doc
"Accessor to the coefficients.

Returns
-------
coef : :class:`~openturns.Point`
    Coefficients :math:`(\\\\alpha_k)_{k \\\\in K}`."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getCoefficients
OT_ProjectionStrategy_getCoefficients_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getExperiment_doc
"Accessor to the experiments.

Returns
-------
exp : :class:`~openturns.WeightedExperiment`
    Weighted experiment used to evaluate the coefficients."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getExperiment
OT_ProjectionStrategy_getExperiment_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getInputSample_doc
"Accessor to the input sample.

Returns
-------
X : :class:`~openturns.Sample`
    Input Sample."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getInputSample
OT_ProjectionStrategy_getInputSample_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getMeasure_doc
"Accessor to the measure.

Returns
-------
mu : Distribution
    Measure :math:`\\\\mu` defining the scalar product."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getMeasure
OT_ProjectionStrategy_getMeasure_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getOutputSample_doc
"Accessor to the output sample.

Returns
-------
Y : :class:`~openturns.Sample`
    Output Sample."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getOutputSample
OT_ProjectionStrategy_getOutputSample_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getRelativeError_doc
"Accessor to the relative error.

Returns
-------
e : float
    Relative error."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getRelativeError
OT_ProjectionStrategy_getRelativeError_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getResidual_doc
"Accessor to the residual.

Returns
-------
er : float
    Residual error."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getResidual
OT_ProjectionStrategy_getResidual_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getWeights_doc
"Accessor to the weights.

Returns
-------
w : :class:`~openturns.Point`
    Weights of the design of experiments."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getWeights
OT_ProjectionStrategy_getWeights_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_setExperiment_doc
"Accessor to the design of experiment.

Parameters
----------
exp : :class:`~openturns.WeightedExperiment`
    Weighted design of experiment."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::setExperiment
OT_ProjectionStrategy_setExperiment_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_setMeasure_doc
"Accessor to the measure.

Parameters
----------
m : Distribution
    Measure :math:`\\\\mu` defining the scalar product."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::setMeasure
OT_ProjectionStrategy_setMeasure_doc