This file is indexed.

/usr/include/openturns/swig/ProcessImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
%define OT_Process_doc
"Base class for stochastic processes.

Notes
-----
The Process class enables to model a stochastic process.

A multivariate stochastic process :math:`X` of dimension :math:`d` is defined
by:

.. math::

    X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d

where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of
:math:`\\\\Rset^n` discretized on the mesh :math:`\\\\cM`, :math:`\\\\vect{t}\\\\in \\\\cD` is
a multivariate index and :math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.

A realization of the process :math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega`
is :math:`X(\\\\omega): \\\\cD  \\\\mapsto \\\\Rset^d` defined by:

.. math::

    X(\\\\omega)(\\\\vect{t}) = X(\\\\omega, \\\\vect{t})

:math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` is the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by:

.. math::

    X_{\\\\vect{t}}(\\\\omega) = X(\\\\omega, \\\\vect{t})


A Process object can be created only through its derived classes:

:class:`~openturns.SpectralGaussianProcess`,
:class:`~openturns.GaussianProcess`,
:class:`~openturns.CompositeProcess`, :class:`~openturns.ARMA`,
:class:`~openturns.RandomWalk`, :class:`~openturns.FunctionalBasisProcess`
and :class:`~openturns.WhiteNoise`."
%enddef
%feature("docstring") OT::ProcessImplementation
OT_Process_doc

// ---------------------------------------------------------------------

%define OT_Process_getContinuousRealization_doc
"Get a continuous realization.

Returns
-------
realization : :class:`~openturns.Function`
    According to the process, the continuous realizations are built:

    - either using a dedicated functional model if it exists: e.g. a functional
      basis process.

    - or using an interpolation from a discrete realization of the process on
      :math:`\\\\cM`: in dimension :math:`d=1`, a linear interpolation and in
      dimension :math:`d \\\\geq 2`, a piecewise constant function (the value at a
      given position is equal to the value at the nearest vertex of the mesh of
      the process)."
%enddef
%feature("docstring") OT::ProcessImplementation::getContinuousRealization
OT_Process_getContinuousRealization_doc

// ---------------------------------------------------------------------

%define OT_Process_getDescription_doc
"Get the description of the process.

Returns
-------
description : :class:`~openturns.Description`
    Description of the process."
%enddef
%feature("docstring") OT::ProcessImplementation::getDescription
OT_Process_getDescription_doc

// ---------------------------------------------------------------------

%define OT_Process_setDescription_doc
"Set the description of the process.

Parameters
----------
description : sequence of str
    Description of the process."
%enddef
%feature("docstring") OT::ProcessImplementation::setDescription
OT_Process_setDescription_doc

// ---------------------------------------------------------------------

%define OT_Process_getDimension_doc
"Get the dimension of the domain :math:`\\\\cD`.

Returns
-------
d : int
    Dimension of the domain :math:`\\\\cD`."
%enddef
%feature("docstring") OT::ProcessImplementation::getDimension
OT_Process_getDimension_doc

// ---------------------------------------------------------------------

%define OT_Process_getFuture_doc
"Prediction of the :math:`N` future iterations of the process.

Parameters
----------
stepNumber : int, :math:`N \\\\geq 0`
    Number of future steps.
size : int, :math:`size \\\\geq 0`, optional
    Number of futures needed. Default is 1.

Returns
-------
prediction : :class:`~openturns.ProcessSample` or :class:`~openturns.TimeSeries`
    :math:`N` future iterations of the process.
    If :math:`size = 1`, *prediction* is a :class:`~openturns.TimeSeries`.
    Otherwise, it is a :class:`~openturns.ProcessSample`."
%enddef
%feature("docstring") OT::ProcessImplementation::getFuture
OT_Process_getFuture_doc

// ---------------------------------------------------------------------

%define OT_Process_getMarginal_doc
"Get the :math:`k^{th}` marginal of the random process.

Parameters
----------
k : int or list of ints :math:`0 \\\\leq k < d`
    Index of the marginal(s) needed.

Returns
-------
marginals : :class:`~openturns.Process`
    Process defined with marginal(s) of the random process."
%enddef
%feature("docstring") OT::ProcessImplementation::getMarginal
OT_Process_getMarginal_doc

// ---------------------------------------------------------------------

%define OT_Process_getMesh_doc
"Get the mesh.

Returns
-------
mesh : :class:`~openturns.Mesh`
    Mesh over which the domain :math:`\\\\cD` is discretized."
%enddef
%feature("docstring") OT::ProcessImplementation::getMesh
OT_Process_getMesh_doc

// ---------------------------------------------------------------------

%define OT_Process_setMesh_doc
"Set the mesh.

Parameters
----------
mesh : :class:`~openturns.Mesh`
    Mesh over which the domain :math:`\\\\cD` is discretized."
%enddef
%feature("docstring") OT::ProcessImplementation::setMesh
OT_Process_setMesh_doc

// ---------------------------------------------------------------------

%define OT_Process_getMeshDimension_doc
"Get the dimension of the mesh.

Returns
-------
n : int
    Dimension :math:`n` of the mesh."
%enddef
%feature("docstring") OT::ProcessImplementation::getMeshDimension
OT_Process_getMeshDimension_doc

// ---------------------------------------------------------------------

%define OT_Process_getRealization_doc
"Get a realization of the process.

Returns
-------
realization : :class:`~openturns.Field`
    Contains a mesh over which the process is discretized and the values of the
    process at the vertices of the mesh."
%enddef
%feature("docstring") OT::ProcessImplementation::getRealization
OT_Process_getRealization_doc

// ---------------------------------------------------------------------

%define OT_Process_getSample_doc
"Get :math:`n` realizations of the process.

Parameters
----------
n : int, :math:`n \\\\geq 0`
    Number of realizations of the process needed.

Returns
-------
processSample : :class:`~openturns.ProcessSample`
    :math:`n` realizations of the random process. A process sample is a
    collection of fields which share the same mesh :math:`\\\\cM \\\\in \\\\Rset^n`."
%enddef
%feature("docstring") OT::ProcessImplementation::getSample
OT_Process_getSample_doc

// ---------------------------------------------------------------------

%define OT_Process_getSpatialDimension_doc
"Get the dimension of the domain :math:`\\\\cD`.

Returns
-------
n : int
    Dimension of the domain :math:`\\\\cD`: :math:`n`."
%enddef
%feature("docstring") OT::ProcessImplementation::getSpatialDimension
OT_Process_getSpatialDimension_doc

// ---------------------------------------------------------------------

%define OT_Process_getTimeGrid_doc
"Get the time grid of observation of the process.

Returns
-------
timeGrid : :class:`~openturns.RegularGrid`
    Time grid of a process when the mesh associated to the
    process can be interpreted as a :class:`~openturns.RegularGrid`. We check
    if the vertices of the mesh are scalar and are regularly spaced in
    :math:`\\\\Rset` but we don't check if the connectivity of the mesh is conform
    to the one of a regular grid (without any hole and composed of ordered
    instants)."
%enddef
%feature("docstring") OT::ProcessImplementation::getTimeGrid
OT_Process_getTimeGrid_doc

// ---------------------------------------------------------------------

%define OT_Process_setTimeGrid_doc
"Set the time grid of observation of the process.

Returns
-------
timeGrid : :class:`~openturns.RegularGrid`
    Time grid of observation of the process when the mesh associated to the
    process can be interpreted as a :class:`~openturns.RegularGrid`. We check
    if the vertices of the mesh are scalar and are regularly spaced in
    :math:`\\\\Rset` but we don't check if the connectivity of the mesh is conform
    to the one of a regular grid (without any hole and composed of ordered
    instants)."
%enddef
%feature("docstring") OT::ProcessImplementation::setTimeGrid
OT_Process_setTimeGrid_doc

// ---------------------------------------------------------------------

%define OT_Process_isComposite_doc
"Test whether the process is composite or not.

Returns
-------
isComposite : bool
    *True* if the process is composite (built upon a function and a process)."
%enddef
%feature("docstring") OT::ProcessImplementation::isComposite
OT_Process_isComposite_doc

// ---------------------------------------------------------------------

%define OT_Process_isNormal_doc
"Test whether the process is normal or not.

Returns
-------
isNormal : bool
    *True* if the process is normal.

Notes
-----
A stochastic process is normal if all its finite dimensional joint
distributions are normal, which means that for all :math:`k \\\\in \\\\Nset` and
:math:`I_k \\\\in \\\\Nset^*`, with :math:`cardI_k=k`, there is
:math:`\\\\vect{m}_1, \\\\dots, \\\\vect{m}_k \\\\in \\\\Rset^d` and
:math:`\\\\mat{C}_{1,\\\\dots,k}\\\\in\\\\mathcal{M}_{kd,kd}(\\\\Rset)` such that:

.. math::

    \\\\Expect{\\\\exp\\\\left\\\\{i\\\\Tr{\\\\vect{X}}_{I_k} \\\\vect{U}_{k}  \\\\right\\\\}} =
    \\\\exp{\\\\left\\\\{i\\\\Tr{\\\\vect{U}}_{k}\\\\vect{M}_{k}-\\\\frac{1}{2}\\\\Tr{\\\\vect{U}}_{k}\\\\mat{C}_{1,\\\\dots,k}\\\\vect{U}_{k}\\\\right\\\\}}

where :math:`\\\\Tr{\\\\vect{X}}_{I_k} = (\\\\Tr{X}_{\\\\vect{t}_1}, \\\\hdots, \\\\Tr{X}_{\\\\vect{t}_k})`,
:math:`\\\\\\\\Tr{vect{U}}_{k} = (\\\\Tr{\\\\vect{u}}_{1}, \\\\hdots, \\\\Tr{\\\\vect{u}}_{k})` and
:math:`\\\\Tr{\\\\vect{M}}_{k} = (\\\\Tr{\\\\vect{m}}_{1}, \\\\hdots, \\\\Tr{\\\\vect{m}}_{k})` and
:math:`\\\\mat{C}_{1,\\\\dots,k}` is the symmetric matrix:

.. math::

  \\\\mat{C}_{1,\\\\dots,k} = \\\\left(
  \\\\begin{array}{cccc}
    C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\hdots & C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
    \\\\hdots & C(\\\\vect{t}_2, \\\\vect{t}_2)  & \\\\hdots & C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
    \\\\hdots & \\\\hdots & \\\\hdots & \\\\hdots \\\\\\\\
    \\\\hdots & \\\\hdots & \\\\hdots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
  \\\\end{array}
  \\\\right)

A normal process is entirely defined by its mean function :math:`m` and its
covariance function :math:`C` (or correlation function :math:`R`)."
%enddef
%feature("docstring") OT::ProcessImplementation::isNormal
OT_Process_isNormal_doc

// ---------------------------------------------------------------------

%define OT_Process_isStationary_doc
"Test whether the process is stationary or not.

Returns
-------
isStationary : bool
    *True* if the process is stationary.

Notes
-----
A process :math:`X` is stationary if its distribution is invariant by
translation: :math:`\\\\forall k \\\\in \\\\Nset`,
:math:`\\\\forall (\\\\vect{t}_1, \\\\dots, \\\\vect{t}_k) \\\\in \\\\cD`,
:math:`\\\\forall \\\\vect{h}\\\\in \\\\Rset^n`, we have:

.. math::

    (X_{\\\\vect{t}_1}, \\\\dots, X_{\\\\vect{t}_k})
    \\\\stackrel{\\\\mathcal{D}}{=} (X_{\\\\vect{t}_1+\\\\vect{h}}, \\\\dots, X_{\\\\vect{t}_k+\\\\vect{h}})
"
%enddef
%feature("docstring") OT::ProcessImplementation::isStationary
OT_Process_isStationary_doc