This file is indexed.

/usr/include/openturns/swig/MonomialFunction_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%define OT_MonomialFunction_doc
"Monomial function class.

Available constructors:
    MonomialFunction(*degree*)

Parameters
----------
degre : int
    Degree of the monomial function

Notes
-----
The *monomial function* defines as :

.. math::

    P(x)  = X^n


Examples
--------
Create a standard absolute exponential covariance function:

>>> import openturns as ot
>>> P = ot.MonomialFunction(3)

"
%enddef
%feature("docstring") OT::MonomialFunction
OT_MonomialFunction_doc

// ---------------------------------------------------------------------

%define OT_MonomialFunction_gradient_doc
"Compute the gradient at point :math:`x`.

Returns
-------
gradient : float
    The value of the monomial's first-order derivative at point :math:`x`.

Examples
--------
>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
>>> print(P.gradient(1.0))
3.0"
%enddef
%feature("docstring") OT::MonomialFunction::gradient
OT_MonomialFunction_gradient_doc

// ---------------------------------------------------------------------

%define OT_MonomialFunction_hessian_doc
"Compute the hessian at point :math:`x`.

Parameters
----------
x : float
    Input value.

Returns
-------
hessian : float
    The value of the monomial's second-order derivative at point :math:`x`.

Examples
--------
>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
>>> print(P.hessian(1.0))
6.0"
%enddef
%feature("docstring") OT::MonomialFunction::hessian
OT_MonomialFunction_hessian_doc

// ---------------------------------------------------------------------