/usr/include/openturns/swig/MonomialFunction_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | %define OT_MonomialFunction_doc
"Monomial function class.
Available constructors:
MonomialFunction(*degree*)
Parameters
----------
degre : int
Degree of the monomial function
Notes
-----
The *monomial function* defines as :
.. math::
P(x) = X^n
Examples
--------
Create a standard absolute exponential covariance function:
>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
"
%enddef
%feature("docstring") OT::MonomialFunction
OT_MonomialFunction_doc
// ---------------------------------------------------------------------
%define OT_MonomialFunction_gradient_doc
"Compute the gradient at point :math:`x`.
Returns
-------
gradient : float
The value of the monomial's first-order derivative at point :math:`x`.
Examples
--------
>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
>>> print(P.gradient(1.0))
3.0"
%enddef
%feature("docstring") OT::MonomialFunction::gradient
OT_MonomialFunction_gradient_doc
// ---------------------------------------------------------------------
%define OT_MonomialFunction_hessian_doc
"Compute the hessian at point :math:`x`.
Parameters
----------
x : float
Input value.
Returns
-------
hessian : float
The value of the monomial's second-order derivative at point :math:`x`.
Examples
--------
>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
>>> print(P.hessian(1.0))
6.0"
%enddef
%feature("docstring") OT::MonomialFunction::hessian
OT_MonomialFunction_hessian_doc
// ---------------------------------------------------------------------
|