This file is indexed.

/usr/include/openturns/swig/MixtureClassifier_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
%feature("docstring") OT::MixtureClassifier
"Particular classifier based on a mixture distribution.

Available constructors:
    MixtureClassifier(*mixtDist*)

Parameters
----------
mixtDist : :class:`~openturns.Mixture`
    A mixture distribution.

See also
--------
Classifier, ExpertMixture

Notes
-----
This implements a mixture classifier which is a particular classifier based on
a mixture distribution:

.. math::

    p( \\\\vect{x} ) = \\\\sum_{i=1}^N w_i p_i ( \\\\vect{x} )

The classifier proposes :math:`N` classes. The rule to assign a point 
:math:`\\\\vect{x}` to a class :math:`i` is defined as follows: 

.. math::
    
    i = \\\\argmax_k \\\\log w_k p_k( \\\\vect{x} )

See useful methods :meth:`classify` and :meth:`grade`."

// ---------------------------------------------------------------------

%feature("docstring") OT::MixtureClassifier::classify
"Classify points according to the classifier.

**Available usages**:

    classify(*inputPoint*)

    classify(*inputSample*)

Parameters
----------
inputPoint : sequence of float
    A point to classify.
inputSample : 2-d a sequence of float
    A set of point to classify.

Notes
-----
The classifier proposes :math:`N` classes where :math:`N` is the dimension of
the mixture distribution *mixtDist*. The rule to assign a point :math:`\\\\vect{x}`
to a class :math:`i` is defined as follows: 

.. math::
    
    i = \\\\argmax_k \\\\log w_k p_k( \\\\vect{x} )

In the first usage, it returns an integer which corresponds to the class where
*inputPoint* has been assigned.

In the second usage, it returns an :class:`~openturns.Indices` that collects the
class of each point of *inputSample*."

// ---------------------------------------------------------------------

%feature("docstring") OT::MixtureClassifier::grade
"Grade points according to the classifier.

**Available usages**:

    grade(*inputPoint, k*)

    grade(*inputSample, classList*)

Parameters
----------
inputPoint : sequence of float
    A point to grade.
inputSample : 2-d a sequence of float
    A set of point to grade.
k : integer
    The class number.
classList : sequence of integer
    The list of class number.

Notes
-----
The grade of :math:`\\\\vect{x}` with respect to the class *k* is
:math:`log w_k p_k ( \\\\vect{x} )`.

In the first usage, it returns a real that grades *inputPoint* with respect to
the class *k*. The greatest, the best.

In the second usage, it returns an :class:`~openturns.Indices` that collects the
grades of the :math:`i^{th}` point of *inputSample* with respect to the
:math:`i^{th}` class of *classList*."

// ---------------------------------------------------------------------

%feature("docstring") OT::MixtureClassifier::getMixture
"Accessor to the mixture distribution.

Returns
-------
mixtDist : :class:`~openturns.Mixture`
    The mixture distribution."

// ---------------------------------------------------------------------

%feature("docstring") OT::MixtureClassifier::setMixture
"Accessor to the mixture distribution.

Parameters
----------
mixtDist : :class:`~openturns.Mixture`
    The mixture distribution."