This file is indexed.

/usr/include/openturns/swig/MetaModelValidation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%feature("docstring") OT::MetaModelValidation
"Base class to score a metamodel and perform validations.

Available constructor:
    MetaModelValidation(*inputValidationSample, outputValidationSample, metaModel*)

Parameters
----------
inputValidationSample, outputValidationSample : 2-d sequence of float
    The input and output validation samples, not used during the learning step.

metaModel : :class:`~openturns.Function`
    Metamodel to validate.

Notes
-----
A MetaModelValidation object is used for the validation process of a metamodel.
For that purpose, a dataset independent of the learning step, is used to score the surrogate model.
Its main functionalities are :

- To compute the predictivity factor :math:`Q_2`
- To get the residual sample, its non parametric distribution
- To draw a `model vs metamodel` validation graph.


Currently only one dimensional output models are available.

Examples
--------
>>> import openturns as ot
>>> from math import pi
>>> dist = ot.Uniform(-pi/2, pi/2)
>>> # Model here is sin(x)
>>> model = ot.SymbolicFunction(['x'], ['sin(x)'])
>>> # We can build several types of models (kriging, pc, ...)
>>> # We use a Taylor developement (order 5) and compare the metamodel with the model
>>> metaModel = ot.SymbolicFunction(['x'], ['x - x^3/6.0 + x^5/120.0'])
>>> x = dist.getSample(10)
>>> y = model(x)
>>> # Validation of the model
>>> val = ot.MetaModelValidation(x, y, metaModel)
>>> # Compute the first indicator : q2
>>> q2 = val.computePredictivityFactor()
>>> # Get the residual
>>> residual = val.getResidualSample()
>>> # Get the histogram of residual
>>> histoResidual = val.getResidualDistribution(False)
>>> # Draw the validation graph
>>> graph = val.drawValidation()
"

// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::getInputSample
"Accessor to the input sample.

Returns
-------
inputSample : :class:`~openturns.Sample`
    Input sample of a model evaluated apart."

// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::getOutputSample
"Accessor to the output sample.

Returns
-------
outputSample : :class:`~openturns.Sample`
    Output sample of a model evaluated apart."

// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::computePredictivityFactor
"Compute the predictivity factor.

Returns
-------
q2 : float
    The predictivity factor

Notes
-----
The predictivity factor :math:`Q_2` is given by :

.. math::
    Q_2 = 1 - \\\\frac{\\\\sum_{l=1}^{N} Y_{l} -\\\\hat{f}(X_l)}{Var(Y)}"

// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::getResidualSample
"Compute the residual sample.

Returns
-------
residual : :class:`~openturns.Sample`
    The residual sample.

Notes
-----
The residual sample is given by :

.. math::
    \\\\epsilon_{l} = Y_{l} -\\\\hat{f}(X_l)"


// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::getResidualDistribution
"Compute the non parametric distribution of the residual sample.

Parameters
----------
smooth : bool
    Tells if distribution is smooth (true) or not.
    Default argument is true.

Returns
-------
residualDistribution : :class:`~openturns.Distribution`
    The residual distribution.

Notes
-----
The residual distribution is built thanks to :class:`~openturns.KernelSmoothing` if `smooth` argument is true. Otherwise, an histogram distribution is returned, thanks to :class:`~openturns.HistogramFactory`."


// ---------------------------------------------------------------------

%feature("docstring") OT::MetaModelValidation::drawValidation
"Plot a model vs metamodel graph for visual validation.

Returns
-------
graph : :class:`~openturns.Graph`
    The visual validation graph."