/usr/include/openturns/swig/Mesh_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | %feature("docstring") OT::Mesh
"Mesh.
Available constructors:
Mesh(*dim=1*)
Mesh(*vertices*)
Mesh(*vertices, simplices*)
Parameters
----------
dim : int, :math:`dim \\\\geq 0`
The dimension of the vertices. By default, it creates only one
vertex of dimension :math:`dim` with components equal to 0.
vertices : 2-d sequence of float
Vertices' coordinates in :math:`\\\\Rset^{dim}`.
simplices : 2-d sequence of int
List of simplices defining the topology of the mesh. The simplex
:math:`[i_1, \\\\dots, i_{dim+1}]` connects the vertices of indices
:math:`(i_1, \\\\dots, i_{dim+1})` in :math:`\\\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
See also
--------
RegularGrid
Examples
--------
>>> import openturns as ot
>>> # Define the vertices of the mesh
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> # Define the simplices of the mesh
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> # Create the mesh of dimension 2
>>> mesh2d = ot.Mesh(vertices, simplices)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::ImportFromMSHFile
"Import mesh from FreeFem 2-d mesh files.
Parameters
----------
MSHFile : str
A MSH ASCII file.
Returns
-------
mesh : :class:`~openturns.Mesh`
Mesh defined in the file *MSHFile*."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::checkPointInSimplex
"Check if a point is inside a simplex.
Parameters
----------
point : sequence of float
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
index : int
Integer characterizes one simplex of the mesh.
Returns
-------
isInside : bool
Flag telling whether *point* is inside the simplex of index *index*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> # Create a point A inside the simplex
>>> pointA = [0.6, 0.3]
>>> print(mesh2d.checkPointInSimplex(pointA, 0))
True
>>> # Create a point B outside the simplex
>>> pointB = [1.1, 0.6]
>>> print(mesh2d.checkPointInSimplex(pointB, 0))
False"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::checkPointInSimplexWithCoordinates
"Check if a point is inside a simplex and returns its barycentric coordinates.
Parameters
----------
point : sequence of float
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
index : int
Integer characterizes one simplex of the mesh.
Returns
-------
isInside : bool
Flag telling whether *point* is inside the simplex of index *index*.
coordinates : :class:`~openturns.Point`
The barycentric coordinates of the given point wrt the vertices of the simplex
.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> # Create a point A inside the simplex
>>> pointA = [0.6, 0.3]
>>> print(mesh2d.checkPointInSimplexWithCoordinates(pointA, 0))
[True, class=Point name=Unnamed dimension=3 values=[0.4,0.3,0.3]]
>>> # Create a point B outside the simplex
>>> pointB = [1.1, 0.6]
>>> print(mesh2d.checkPointInSimplexWithCoordinates(pointB, 0))
[False, class=Point name=Unnamed dimension=3 values=[-0.1,0.5,0.6]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::computeSimplexVolume
"Compute the volume of a given simplex.
Parameters
----------
index : int
Integer characterizes one simplex of the mesh.
Returns
-------
volume : float
Volume of the simplex of index *index*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> print(mesh2d.computeSimplexVolume(0))
0.5"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::computeP1Gram
"Compute the P1 Lagrange finite element gram matrix of the mesh.
Returns
-------
gram : :class:`~openturns.CovarianceMatrix`
P1 Lagrange finite element gram matrix of the mesh.
Notes
-----
The P1 Lagrange finite element space associated to a mesh with vertices :math:`(\\\\vect{x}_i)_{i=1,\\\\hdots,n}` is the space of piecewise-linear functions generated by the functions :math:`(\\\\phi_i)_{i=1,\\\\hdots,n}`, where :math:`\\\\phi_i(\\\\vect{x_i})=1`, :math:`\\\\phi_i(\\\\vect{x_j})=0` for :math:`j\\\\neq i` and the restriction of :math:`\\\\phi_i` to any simplex is an affine function. The vertices that are not included into at least one simplex are not taken into account.
The gram matrix of the mesh is defined as the symmetric positive definite matrix :math:`\\\\mat{K}` whose generic element :math:`K_{i,j}` is given by:
.. math::
\\\\forall i,j=1,\\\\hdots,n,\\\\quad K_{i,j}=\\\\int_{\\\\cD}\\\\phi_i(\\\\vect{x})\\\\phi_j(\\\\vect{x})\\\\di{\\\\vect{x}}
This method is used in several algorithms related to stochastic process representation such as the Karhunen-Loeve decomposition.
Examples
--------
>>> import openturns as ot
>>> # Define the vertices of the mesh
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> # Define the simplices of the mesh
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> # Create the mesh of dimension 2
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.computeP1Gram())
[[ 0.0416667 0.0208333 0.0208333 0 ]
[ 0.0208333 0.0625 0.03125 0.0104167 ]
[ 0.0208333 0.03125 0.0625 0.0104167 ]
[ 0 0.0104167 0.0104167 0.0208333 ]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::draw
"Draw the mesh.
Returns
-------
graph : :class:`~openturns.Graph`
If the dimension of the mesh is 1, it draws the corresponding interval,
using the :meth:`draw1D` method; if the dimension is 2, it draws the
triangular simplices, using the :meth:`draw2D` method; if the dimension is
3, it projects the simplices on the plane of the two first components,
using the :meth:`draw3D` method with its default parameters, superposing
the simplices."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::draw1D
"Draw the mesh of dimension 1.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the line linking the vertices of the mesh when the mesh is of
dimension 1.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> vertices = [[0.5], [1.5], [2.1], [2.7]]
>>> simplices = [[0, 1], [1, 2], [2, 3]]
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> # Create a graph
>>> aGraph = mesh1d.draw1D()
>>> # Draw the mesh
>>> View(aGraph).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::draw2D
"Draw the mesh of dimension 2.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the edges of each simplex, when the mesh is of dimension 2.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> # Create a graph
>>> aGraph = mesh2d.draw2D()
>>> # Draw the mesh
>>> View(aGraph).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::draw3D
"Draw the bidimensional projection of the mesh.
Available usages:
draw3D(*drawEdge=True, thetaX=0.0, thetaY=0.0, thetaZ=0.0, shading=False, rho=1.0*)
draw3D(*drawEdge, rotation, shading, rho*)
Parameters
----------
drawEdge : bool
Tells if the edge of each simplex has to be drawn.
thetaX : float
Gives the value of the rotation along the X axis in radian.
thetaY : float
Gives the value of the rotation along the Y axis in radian.
thetaZ : float
Gives the value of the rotation along the Z axis in radian.
rotation : :class:`~openturns.SquareMatrix`
Operates a rotation on the mesh before its projection of the plane of the
two first components.
shading : bool
Enables to give a visual perception of depth and orientation.
rho : float, :math:`0 \\\\leq \\\\rho \\\\leq 1`
Contraction factor of the simplices. If :math:`\\\\rho < 1`, all the
simplices are contracted and appear deconnected: some holes are created,
which enables to see inside the mesh. If :math:`\\\\rho = 1`, the simplices
keep their initial size and appear connected. If :math:`\\\\rho = 0`, each
simplex is reduced to its gravity center.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the bidimensional projection of the mesh on the :math:`(x,y)` plane.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> from math import cos, sin, pi
>>> vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0],
... [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0],
... [1.0, 1.0, 0.0], [1.0, 1.0, 1.0]]
>>> simplices = [[0, 1, 2, 4], [3, 5, 6, 7],[1, 2, 3, 6],
... [1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 5, 6]]
>>> mesh3d = ot.Mesh(vertices, simplices)
>>> # Create a graph
>>> aGraph = mesh3d.draw3D()
>>> # Draw the mesh
>>> View(aGraph).show()
>>> rotation = ot.SquareMatrix(3)
>>> rotation[0, 0] = cos(pi / 3.0)
>>> rotation[0, 1] = sin(pi / 3.0)
>>> rotation[1, 0] = -sin(pi / 3.0)
>>> rotation[1, 1] = cos(pi / 3.0)
>>> rotation[2, 2] = 1.0
>>> # Create a graph
>>> aGraph = mesh3d.draw3D(True, rotation, True, 1.0)
>>> # Draw the mesh
>>> View(aGraph).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::exportToVTKFile
"Export the mesh to a VTK file.
Parameters
----------
myVTKFile.vtk : str
Name of the created file which contains the mesh and the associated random
values that can be visualized with the open source software
`Paraview <http://www.paraview.org/>`_."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getDescription
"Get the description of the vertices.
Returns
-------
description : str
Description of the vertices.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> vertices = ot.Sample([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]])
>>> vertices.setDescription(['X', 'Y'])
>>> mesh.setVertices(vertices)
>>> print(mesh.getDescription())
[X,Y]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getNearestVertex
"Get the nearest vertex of a given point.
Parameters
----------
point : sequence of float
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
vertex : :class:`~openturns.Point`
Coordinates of the nearest vertex of *point*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> point = [0.9, 0.4]
>>> print(mesh2d.getNearestVertex(point))
[1,0]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getNearestVertexIndex
"Get the index of the nearest vertex of a given point.
Parameters
----------
point : sequence of float
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
index : int
Index of the simplex the nearest of *point* according to the Euclidean
norm.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> point = [0.9, 0.4]
>>> print(mesh2d.getNearestVertexIndex(point))
1"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getNearestVertexAndSimplexIndicesWithCoordinates
"Get the index of the nearest vertex of a given point and the containing simplex if any, and returns its barycentric coordinates.
Parameters
----------
point : sequence of float
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
indices : :class:`~openturns.Indices`
Collecton of 1 or 2 integers, the first one being the index of the vertex the closest to the given point and the second one the index of the containing simplex if the given point is inside of the mesh.
coordinates : :class:`~openturns.Point`
The barycentric coordinates of the given point wrt the vertices of the containing simplex. It is of dimension 0 if the point is not contained into the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> # Create a point A inside the simplex
>>> pointA = [0.6, 0.3]
>>> print(mesh2d.getNearestVertexAndSimplexIndicesWithCoordinates(pointA))
[[1,0], class=Point name=Unnamed dimension=3 values=[0.4,0.3,0.3]]
>>> # Create a point B outside the simplex
>>> pointB = [1.1, 0.6]
>>> print(mesh2d.getNearestVertexAndSimplexIndicesWithCoordinates(pointB))
[[2], class=Point name=Unnamed dimension=0 values=[]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getSimplex
"Get the simplex of a given index.
Parameters
----------
index : int
Index characterizing one simplex of the mesh.
Returns
-------
indices : :class:`~openturns.Indices`
Indices defining the simplex of index *index*. The simplex
:math:`[i_1, \\\\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\\\dots, i_{n+1})` in :math:`\\\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getSimplex(0))
[0,1,2]
>>> print(mesh2d.getSimplex(1))
[1,2,3]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getSimplices
"Get the simplices of the mesh.
Returns
-------
indicesCollection : collection of :class:`~openturns.Indices`
List of indices defining all the simplices. The simplex
:math:`[i_1, \\\\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\\\dots, i_{n+1})` in :math:`\\\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getSimplices())
[[0,1,2],[1,2,3]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getSimplicesNumber
"Get the number of simplices of the mesh.
Returns
-------
number : int
Number of simplices of the mesh."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getVertex
"Get the vertex of a given index.
Parameters
----------
index : int
Index characterizing one vertex of the mesh.
Returns
-------
vertex : :class:`~openturns.Point`
Coordinates in :math:`\\\\Rset^{dim}` of the vertex of index *index*,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getVertex(1))
[1,0]
>>> print(mesh2d.getVertex(0))
[0,0]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getVertices
"Get the vertices of the mesh.
Returns
-------
vertices : :class:`~openturns.Sample`
Coordinates in :math:`\\\\Rset^{dim}` of the vertices,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = [[0, 1, 2]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getVertices())
0 : [ 0 0 ]
1 : [ 1 0 ]
2 : [ 1 1 ]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getVerticesNumber
"Get the number of vertices of the mesh.
Returns
-------
number : int
Number of vertices of the mesh."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getVolume
"Get the volume of the mesh.
Returns
-------
volume : float
Geometrical volume of the mesh which is the sum of its simplices' volumes.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> mesh2d.getVolume()
0.75"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::isRegular
"Check if the mesh is regular (only for 1-d meshes).
Returns
-------
isRegular : bool
Tells if the mesh is regular or not.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.5], [1.5], [2.4], [3.5]]
>>> simplices = [[0, 1], [1, 2], [2, 3]]
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
False
>>> vertices = [[0.5], [1.5], [2.5], [3.5]]
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
True"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::isValid
"Check the mesh validity.
Returns
-------
validity : bool
Tells if the mesh is valid i.e. if there is non-overlaping simplices,
no unused vertex, no simplices with duplicate vertices and no coincident
vertices."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::setSimplices
"Set the simplices of the mesh.
Parameters
----------
indices : 2-d sequence of int
List of indices defining all the simplices. The simplex
:math:`[i_1, \\\\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\\\dots, i_{n+1})` in :math:`\\\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh.setSimplices(simplices)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::setVertex
"Set a vertex of a given index.
Parameters
----------
index : int
Index of the vertex to set.
vertex : sequence of float
Cordinates in :math:`\\\\Rset^{dim}` of the vertex of index *index*,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = [[0, 1, 2]]
>>> mesh = ot.Mesh(vertices, simplices)
>>> vertex = [0.0, 0.5]
>>> mesh.setVertex(0, vertex)
>>> print(mesh.getVertices())
0 : [ 0 0.5 ]
1 : [ 1 0 ]
2 : [ 1 1 ]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::setVertices
"Set the vertices of the mesh.
Parameters
----------
vertices : 2-d sequence of float
Cordinates in :math:`\\\\Rset^{dim}` of the vertices,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> mesh.setVertices(vertices)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::streamToVTKFormat
"Give a VTK representation of the mesh.
Returns
-------
stream : str
VTK representation of the mesh."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::getVerticesToSimplicesMap
"Accessor to the map between vertices and simplices.
Returns
-------
verticesSimplicesMap : :class:`~openturns.IndicesCollection`
For each vertex, list the vertices indices it belongs to."
// ---------------------------------------------------------------------
%feature("docstring") OT::Mesh::computeWeights
"Compute an approximation of an integral defined over the mesh.
Returns
-------
weights : :class:`~openturns.Point`
Weights such that an integral of a function over the mesh
is a weighted sum of its values at the vertices."
|