/usr/include/openturns/swig/MaximumEntropyOrderStatisticsDistribution_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | %feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution
"MaximumEntropyOrderStatistics distribution.
Parameters
----------
coll : sequence of :class:`~openturns.Distribution`
The marginals, with range verifying :math:`a_i \\\\leq a_{i+1}` and :math:`b_i \\\\leq b_{i+1}`.
useApproximation : bool
Indicates whether the expression :math:`\\\\Phi_k(t)` is approximated with a polynomials (Hermitte with degree 4 on a discretization determined by a Gauss-Kronrod algorithm applied to :math:`\\\\Phi_k(t)`).
By default, the approximation is used.
checkMarginals : bool
Indicates whether the compatibility tests on the marginals is done.
By default, the tests are done.
Notes
-----
Its realizations are ordered :math:`X_1 \\\\leq \\\\dots \\\\leq X_n`.
Its probability density function is defined as:
.. math::
f_X(x) = f_1(x_1) \\\\prod\\\\limits_{k=2}^d \\\\phi_k(x_k) \\\\exp\\\\left(-\\\\int_{x_{k-1}}^{x_k} \\\\phi_k(s)\\\\di{s}\\\\right) \\\\mathbf{1}_{x_1 \\\\leq \\\\dots \\\\leq x_d}
\\\\text{with } \\\\phi_k(x_k) = \\\\frac{f_k(x_k)}{F_{k-1}(x_k)-F_k(x_k)}
We note:
.. math::
\\\\Phi_k(t) = \\\\exp\\\\left(-\\\\int_{a_{k}}^{t} \\\\phi_k(s)\\\\di{s}\\\\right)
Examples
--------
Create a distribution:
>>> import openturns as ot
>>> coll = [ot.Uniform(-1.0, 1.0), ot.LogUniform(1.0, 1.2), ot.Triangular(3.0, 4.0, 5.0)]
>>> distribution = ot.MaximumEntropyOrderStatisticsDistribution(coll)
Draw a sample:
>>> sample = distribution.getSample(5)"
// ---------------------------------------------------------------------
%feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution::getDistributionCollection
"Accessor to the distribution's collection.
Returns
-------
coll : sequence
The marginals."
// ---------------------------------------------------------------------
%feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution::setDistributionCollection
"Accessor to the distribution's collection.
Parameters
----------
coll : sequence
The marginals."
// ---------------------------------------------------------------------
|