This file is indexed.

/usr/include/openturns/swig/MaximumEntropyOrderStatisticsDistribution_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution
"MaximumEntropyOrderStatistics distribution.

Parameters
----------
coll : sequence of :class:`~openturns.Distribution`
    The marginals, with range verifying :math:`a_i \\\\leq a_{i+1}` and :math:`b_i \\\\leq b_{i+1}`.
useApproximation : bool
    Indicates whether the expression :math:`\\\\Phi_k(t)` is approximated with a polynomials (Hermitte with degree 4 on a discretization determined by a Gauss-Kronrod algorithm applied to :math:`\\\\Phi_k(t)`).
    By default, the approximation is used.
checkMarginals : bool
    Indicates whether the compatibility tests on the marginals is done.
    By default, the tests are done.

Notes
-----
Its realizations are ordered :math:`X_1 \\\\leq \\\\dots \\\\leq X_n`.

Its probability density function is defined as:

.. math::

    f_X(x) = f_1(x_1) \\\\prod\\\\limits_{k=2}^d \\\\phi_k(x_k) \\\\exp\\\\left(-\\\\int_{x_{k-1}}^{x_k} \\\\phi_k(s)\\\\di{s}\\\\right) \\\\mathbf{1}_{x_1 \\\\leq \\\\dots \\\\leq x_d}

             \\\\text{with } \\\\phi_k(x_k) = \\\\frac{f_k(x_k)}{F_{k-1}(x_k)-F_k(x_k)}

We note:

.. math::

    \\\\Phi_k(t) = \\\\exp\\\\left(-\\\\int_{a_{k}}^{t} \\\\phi_k(s)\\\\di{s}\\\\right)


Examples
--------
Create a distribution:

>>> import openturns as ot
>>> coll = [ot.Uniform(-1.0, 1.0), ot.LogUniform(1.0, 1.2), ot.Triangular(3.0, 4.0, 5.0)]
>>> distribution = ot.MaximumEntropyOrderStatisticsDistribution(coll)

Draw a sample:

>>> sample = distribution.getSample(5)"

// ---------------------------------------------------------------------

%feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution::getDistributionCollection
"Accessor to the distribution's collection.

Returns
-------
coll : sequence
    The marginals."

// ---------------------------------------------------------------------

%feature("docstring") OT::MaximumEntropyOrderStatisticsDistribution::setDistributionCollection
"Accessor to the distribution's collection.

Parameters
----------
coll : sequence
    The marginals."

// ---------------------------------------------------------------------