This file is indexed.

/usr/include/openturns/swig/LowDiscrepancyExperiment_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
%feature("docstring") OT::LowDiscrepancyExperiment
"LowDiscrepancy experiment.

Available constructors:
    LowDiscrepancyExperiment(*size, restart*)

    LowDiscrepancyExperiment(*sequence, size, restart*)

    LowDiscrepancyExperiment(*sequence, distribution, size, restart*)

Parameters
----------
size : positive int
    Number :math:`N` of points of the sequence.
sequence : :class:`~openturns.LowDiscrepancySequence`
    Sequence of points :math:`(u_1, \\\\cdots, u_N)` with low discrepancy.
    If not specified, the sequence is a :class:`~openturns.SobolSequence`.
distribution :
    Distribution :math:`\\\\mu` of dimension :math:`n` with an independent copula.
    The low discrepancy sequence :math:`(u_1, \\\\cdots, u_N)` is uniformly
    distributed over :math:`[0,1]^n`. We use the marginal transformation
    :math:`\\\\Xi_i =F_i^{-1}(u_i)` to generate points :math:`(\\\\Xi_i)_{i\\\\in I}`
    according to the distribution :math:`\\\\mu`. The weights are all equal to
    :math:`1/N`.
restart : bool
    Flag to tell if the low discrepancy sequence must be restarted from
    its initial state at each change of distribution or not.
    Default is *True*: the sequence is restarted at each change of
    distribution.

Notes
-----
The :meth:`generate` method generates points :math:`(\\\\Xi_i)_{i \\\\in I}`
independently from the distribution :math:`\\\\mu`. When the :meth:`generate`
method is recalled, the generated sample changes.

See also
--------
WeightedExperiment

Examples
--------
>>> import openturns as ot
>>> distribution = ot.ComposedDistribution([ot.Uniform(0.0, 1.0)] * 2)

Generate the sample with a reinitialization of the sequence at each change
of distribution:

>>> myPlane = ot.LowDiscrepancyExperiment(ot.SobolSequence(), distribution, 5, True)
>>> print(myPlane.generate())
    [ X0    X1    ]
0 : [ 0.5   0.5   ]
1 : [ 0.75  0.25  ]
2 : [ 0.25  0.75  ]
3 : [ 0.375 0.375 ]
4 : [ 0.875 0.875 ]
>>> print(myPlane.generate())
    [ X0     X1     ]
0 : [ 0.625  0.125  ]
1 : [ 0.125  0.625  ]
2 : [ 0.1875 0.3125 ]
3 : [ 0.6875 0.8125 ]
4 : [ 0.9375 0.0625 ]
>>> myPlane.setDistribution(distribution)
>>> print(myPlane.generate())
    [ X0    X1    ]
0 : [ 0.5   0.5   ]
1 : [ 0.75  0.25  ]
2 : [ 0.25  0.75  ]
3 : [ 0.375 0.375 ]
4 : [ 0.875 0.875 ]

Generate the sample keeping the previous state of the sequence at each change
of distribution:

>>> myPlane = ot.LowDiscrepancyExperiment(ot.SobolSequence(), distribution, 5, False)
>>> print(myPlane.generate())
    [ X0    X1    ]
0 : [ 0.5   0.5   ]
1 : [ 0.75  0.25  ]
2 : [ 0.25  0.75  ]
3 : [ 0.375 0.375 ]
4 : [ 0.875 0.875 ]
>>> print(myPlane.generate())
    [ X0     X1     ]
0 : [ 0.625  0.125  ]
1 : [ 0.125  0.625  ]
2 : [ 0.1875 0.3125 ]
3 : [ 0.6875 0.8125 ]
4 : [ 0.9375 0.0625 ]
>>> myPlane.setDistribution(distribution)
>>> print(myPlane.generate())
    [ X0     X1     ]
0 : [ 0.4375 0.5625 ]
1 : [ 0.3125 0.1875 ]
2 : [ 0.8125 0.6875 ]
3 : [ 0.5625 0.4375 ]
4 : [ 0.0625 0.9375 ]
"
// ---------------------------------------------------------------------

%feature("docstring") OT::LowDiscrepancyExperiment::getSequence
"Return the sequence.

Returns
-------
sequence : :class:`~openturns.LowDiscrepancySequence`
    Sequence of points :math:`(u_1, \\\\cdots, u_N)` with low discrepancy."

// ---------------------------------------------------------------------

%feature("docstring") OT::LowDiscrepancyExperiment::getRestart
"Return the value of the *restart* flag.

Returns
-------
restart : bool
    The value of the *restart* flag."

// ---------------------------------------------------------------------

%feature("docstring") OT::LowDiscrepancyExperiment::setRestart
"Set the value of the *restart* flag.

Parameters
----------
restart : bool
    The value of the *restart* flag. If equals to *True*, the low
    discrepancy sequence is restarted at each change of distribution,
    else it is changed only if the new distribution has a dimension
    different from the current one.
"