This file is indexed.

/usr/include/openturns/swig/LinearModelTest_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
%feature("docstring") OT::LinearModelTest::LinearModelAdjustedRSquared
"Test the quality of the linear regression model Test.

Based on the adjusted :math:`R^2` indicator.

**Available usages**:

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample*)

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample, level*)

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample, linearModel, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelRSquared, LinearModelTest_LinearModelFisher,
LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelAdjustedRSquared test checks the quality of the linear
regression model. It evaluates the indicator :math:`R^2` adjusted (regression
variance analysis) and compares it to a level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelAdjustedRSquared(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=AdjustedRSquared binaryQualityMeasure=false p-value threshold=0.95 p-value=0.815998 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelFisher
"Test the nullity of the linear regression model coefficients.

**Available usages**:

    LinearModelTest.LinearModelFisher(*firstSample, secondSample*)

    LinearModelTest.LinearModelFisher(*firstSample, secondSample, level*)

    LinearModelTest.LinearModelFisher(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelFisher(*firstSample, secondSample, linearModel, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelRSquared, LinearModelTest_LinearModelAdjustedRSquared,
LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelFisher test checks the nullity of the regression linear model
coefficients (Fisher distribution is used).

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelFisher(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=Fisher binaryQualityMeasure=false p-value threshold=0.05 p-value=1 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelRSquared
"Test the quality of the linear regression model based on the :math:`R^2` indicator.

**Available usages**:

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample*)

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample, level*)

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample, linearModel, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelAdjustedRSquared,  LinearModelTest_LinearModelFisher, LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelRSquared test checks the quality of the linear
regression model. It evaluates the indicator :math:`R^2` (regression
variance analysis) and compares it to a level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelRSquared(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=RSquared binaryQualityMeasure=false p-value threshold=0.95 p-value=0.822343 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelResidualMean
"Test zero mean value of the residual of the linear regression model.

**Available usages**:

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample*)

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample, level*)

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample, linearModel, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelAdjustedRSquared,  LinearModelTest_LinearModelFisher, LinearModelTest_LinearModelRSquared, LinearModelTest_LinearModelHarrisonMcCabe

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelResidualMean Test checks, under the hypothesis of a gaussian
sample, if the mean of the residual is equal to zero. It is based on the Student
test (equality of mean for two gaussian samples).

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelResidualMean(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=ResidualMean binaryQualityMeasure=true p-value threshold=0.05 p-value=1 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelHarrisonMcCabe
"Test the homoskedasticity of the linear regression model residuals.

**Available usages**:

    LinearModelTest.LinearModelHarrisonMcCabe(*firstSample, secondSample*)

    LinearModelTest.LinearModelHarrisonMcCabe(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelHarrisonMcCabe(*firstSample, secondSample, level, breakPoint, simulationSize*)

    LinearModelTest.LinearModelHarrisonMcCabe(*firstSample, secondSample, linearModel, level, breakPoint, simulationSize*)

Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.
breakPoint : positive float :math:`< 1`
    Percentage of data to be taken as breakPoint in the variances. It must be
    :math:`< 1`, equal to 0.5 by default.
simulationSize : positive int
    Size of the sample used to compute the p-value. Default is 1000.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelBreuschPagan, LinearModelTest_LinearModelResidualMean,
LinearModelTest_LinearModelDurbinWatson

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual.

The Harrison-McCabe test checks the heteroskedasticity of the residuals. The
breakpoint in the variances is set by default to the half of the sample. The
p-value is estimed using simulation. If the binary quality measure is false, then
the homoskedasticity hypothesis can be rejected with respect to the given level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelHarrisonMcCabe(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=HarrisonMcCabe binaryQualityMeasure=true p-value threshold=0.95 p-value=0.142 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelBreuschPagan
"Test the homoskedasticity of the linear regression model residuals.

**Available usages**:

    LinearModelTest.LinearModelBreuschPagan(*firstSample, secondSample*)

    LinearModelTest.LinearModelBreuschPagan(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelBreuschPagan(*firstSample, secondSample, level*)

    LinearModelTest.LinearModelBreuschPagan(*firstSample, secondSample, linearModel, level*)

Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelHarrisonMcCabe, LinearModelTest_LinearModelResidualMean,
LinearModelTest_LinearModelDurbinWatson

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual.

The Breusch-Pagan test checks the heteroskedasticity of the residuals. A linear
regression model is fitted on the squared residuals. The statistic is computed
using the Studendized version with the chi-squared distribution. If the binary
quality measure is false, then the homoskedasticity hypothesis can be rejected
with respect to the given level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelBreuschPagan(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=BreuschPagan binaryQualityMeasure=true p-value threshold=0.95 p-value=0.700772 description=[]
"


// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelDurbinWatson
"Test the autocorrelation of the linear regression model residuals.

**Available usages**:

    LinearModelTest.LinearModelDurbinWatson(*firstSample, secondSample*)

    LinearModelTest.LinearModelDurbinWatson(*firstSample, secondSample, hypothesis, level*)

    LinearModelTest.LinearModelDurbinWatson(*firstSample, secondSample, linearModel*)

    LinearModelTest.LinearModelDurbinWatson(*firstSample, secondSample, linearModel, hypothesis, level*)

Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
linearModel : :class:`~openturns.LinearModel`
    A linear model. If not provided, it is built using the given samples.
hypothesis : string
    Hypothesis H0 for the residuals. It can be : 'Equal' to 0, 'Less' than 0 or
    'Greater' than 0. Default is set to 'Equal' to 0.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelBreuschPagan, LinearModelTest_LinearModelHarrisonMcCabe, LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual.

The Durbin-Watson test checks the autocorrelation of the residuals. It is possible
to test is the autocorrelation is equal to 0, and less or greater than 0. The
p-value is computed using a normal approximation with mean and variance of the
Durbin-Watson test statistic. If the binary quality measure is false, then the
given autocorrelation hypothesis can be rejected with respect to the given level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelDurbinWatson(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=DurbinWatson binaryQualityMeasure=true p-value threshold=0.95 p-value=0.653603 description=[Hypothesis test: autocorrelation equals 0.]
"