/usr/include/openturns/swig/LinearCombinationFunction_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | %feature("docstring") OT::LinearCombinationFunction
"Linear combination of functions.
Allows to create a function which is the linear combination of functions
with scalar weights.
:math:`functionCollection = (f_1, \\\\hdots, f_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\, f_i: \\\\Rset^n \\\\rightarrow \\\\Rset^{p}`
and :math:`scalarCoefficientColl = (c_1, \\\\hdots, c_N) \\\\in \\\\Rset^N`
then the linear combination is:
.. math::
linComb: \\\\left|\\\\begin{array}{rcl}
\\\\Rset^n & \\\\rightarrow & \\\\Rset^{p} \\\\\\\\
\\\\vect{X} & \\\\mapsto & \\\\displaystyle \\\\sum_i c_if_i (\\\\vect{X})
\\\\end{array}\\\\right.
Available constructor:
LinearCombinationFunction(*functionCollection, scalarCoefficientColl*)
Parameters
----------
functionCollection : sequence of :class:`~openturns.Function`
Collection of functions to sum.
scalarCoefficientColl : sequence of float
Collection of scalar weights.
Examples
--------
>>> import openturns as ot
>>> functions = list()
>>> functions.append(ot.SymbolicFunction(['x1', 'x2', 'x3'],
... ['x1^2 + x2', 'x1 + x2 + x3']))
>>> functions.append(ot.SymbolicFunction(['x1', 'x2', 'x3'],
... ['x1 + 2 * x2 + x3', 'x1 + x2 - x3']))
>>> coefficients = [2.0, 4.0]
>>> myFunction2 = ot.LinearCombinationFunction(functions, coefficients)
>>> print(myFunction2([1.0, 2.0, 3.0]))
[38,12]"
|