This file is indexed.

/usr/include/openturns/swig/LHSResult_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
%define OT_LHSResult_doc
"Summarize the results of an LHS optimization.

Available constructor:
    LHSResult(*bounds, spaceFilling, nRestart*)

Parameters
----------
spaceFilling : :class:`~ot.SpaceFilling`
    The space filling criteria used by optimization algorithm
nRestart : int
    The number of restarts performed by optimization algorithm

Notes
-----
This class is not intendeted to be built by hand, but returned by optimization algorithms.

Examples
--------
>>> import openturns as ot
>>> lhs = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*3), 100)
>>> lhs.setAlwaysShuffle(True) # randomized
>>> profile = ot.GeometricProfile()
>>> spaceFilling = ot.SpaceFillingC2()
>>> # Optim algo
>>> algo = ot.SimulatedAnnealingLHS(lhs, profile, spaceFilling)
>>> # first, generate a design
>>> design = algo.generate()
>>> # then, get the result
>>> result = algo.getResult()
"
%enddef
%feature("docstring") OT::LHSResult
OT_LHSResult_doc

// ---------------------------------------------------------------------

%define OT_LHSResult_get_optimal_design_doc
"Accessor to the optimal design.

Returns
-------
design : :class:`~openturns.Sample`
    The design that optimizes the criterion.

Examples
--------
>>> import openturns as ot
>>> lhs = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*3), 100)
>>> lhs.setAlwaysShuffle(True) # randomized
>>> spaceFilling = ot.SpaceFillingPhiP(10)
>>> # By Monte Carlo
>>> algoMC = ot.MonteCarloLHS(lhs, 1000, spaceFilling)
>>> # Get LHSResult
>>> optimalDesignMC = algoMC.generate()
>>> resultMC = algoMC.getResult()
>>> # By simulated annealing, with restart
>>> profile = ot.GeometricProfile()
>>> algoSA = ot.SimulatedAnnealingLHS(lhs, profile, spaceFilling)
>>> # Get LHSResult
>>> optimalDesignSA = algoSA.generateWithRestart(5)
>>> resultSA = algoSA.getResult()
>>> # Get optimal results for all restarts
>>> optimRestart = [resultSA.getOptimalDesign(i) for i in range(resultSA.getNumberOfRestarts())]"
%enddef
%feature("docstring") OT::LHSResult::getOptimalDesign
OT_LHSResult_get_optimal_design_doc
// ---------------------------------------------------------------------
%define OT_LHSResult_get_algo_history_doc
"Accessor to the internal values computed during optimization algorithm.

Returns
-------
history : :class:`~openturns.Point`
    Some internal values computed during optimization algorithm.
    SimulatedAnnealingLHS stores criterion value, temperature
    and probability at each iteration.

Examples
--------
>>> import openturns as ot
>>> lhs = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*3), 100)
>>> lhs.setAlwaysShuffle(True) # randomized
>>> profile = ot.GeometricProfile()
>>> spaceFilling = ot.SpaceFillingPhiP(50)
>>> algoSA = ot.SimulatedAnnealingLHS(lhs, profile, spaceFilling)
>>> # Get LHSResult
>>> design = algoSA.generateWithRestart(5)
>>> resultSA = algoSA.getResult()
>>> criterionHistory = resultSA.getAlgoHistory()"
%enddef
%feature("docstring") OT::LHSResult::getAlgoHistory
OT_LHSResult_get_algo_history_doc
// ---------------------------------------------------------------------
%define OT_LHSResult_get_c2_doc
"Accessor to the C2 criterion evaluated on the optimal design.

Returns
-------
c2 : float
    The C2 criterion.

Examples
--------
>>> import openturns as ot
>>> lhs = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*3), 100)
>>> lhs.setAlwaysShuffle(True) # randomized
>>> profile = ot.GeometricProfile()
>>> spaceFilling = ot.SpaceFillingPhiP(50)
>>> algoSA = ot.SimulatedAnnealingLHS(lhs, profile, spaceFilling)
>>> # Get LHSResult
>>> design = algoSA.generate()
>>> resultSA = algoSA.getResult()
>>> c2 = resultSA.getC2()"
%enddef
%feature("docstring") OT::LHSResult::getC2
OT_LHSResult_get_c2_doc
// ---------------------------------------------------------------------
%define OT_LHSResult_get_phi_p_doc
"Accessor the PhiP criterion evaluated on the optimal design.

Returns
-------
phiP : float
    The PhiP criterion.

Examples
--------
>>> import openturns as ot
>>> lhs = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*3), 100)
>>> lhs.setAlwaysShuffle(True) # randomized
>>> profile = ot.GeometricProfile()
>>> spaceFilling = ot.SpaceFillingPhiP(50)
>>> algoSA = ot.SimulatedAnnealingLHS(lhs, profile, spaceFilling)
>>> design = algoSA.generate()
>>> # Get LHSResult
>>> resultSA = algoSA.getResult()
>>> phip = resultSA.getPhiP()"
%enddef
%feature("docstring") OT::LHSResult::getPhiP
OT_LHSResult_get_phi_p_doc

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::drawHistoryCriterion
"Draw criterion history.

Parameters
----------
restart : int (optional)
    The restart index.
title : str (optional)
    Graph title.

Returns
-------
graph : :class:`~openturns.Graph`
    The resulting graph."

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::drawHistoryProbability
"Draw probability history.

Parameters
----------
restart : int (optional)
    The restart index.
title : str (optional)
    Graph title.

Returns
-------
graph : :class:`~openturns.Graph`
    The resulting graph."

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::drawHistoryTemperature
"Draw temperature history.

Parameters
----------
restart : int (optional)
    The restart index.
title : str (optional)
    Graph title.

Returns
-------
graph : :class:`~openturns.Graph`
    The resulting graph."

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::getMinDist
"Minimum distance accessor.

Parameters
----------
restart : int (optional)
    The restart index.

Returns
-------
minDist : float
    The minimum distance of sample points."

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::getNumberOfRestarts
"Restart number accessor.

Returns
-------
restart : int (optional)
    The number of restart."

// ---------------------------------------------------------------------

%feature("docstring") OT::LHSResult::getOptimalValue
"Optimal value accessor.

Returns
-------
value : float (optional)
    The optimal value."