/usr/include/openturns/swig/KrigingResult_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | %feature("docstring") OT::KrigingResult
"Kriging result.
Available constructors:
KrigingResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCoefficients*)
KrigingResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCoefficients, covarianceCholeskyFactor, covarianceHMatrix*)
Parameters
----------
inputSample, outputSample : 2-d sequence of float
The samples :math:`(\\\\vect{x}_k)_{1 \\\\leq k \\\\leq N} \\\\in \\\\Rset^d` and :math:`(\\\\vect{y}_k)_{1 \\\\leq k \\\\leq N}\\\\in \\\\Rset^p`.
metaModel : :class:`~openturns.Function`
The meta model: :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:`metaModelKrigFinal`.
residuals : :class:`~openturns.Point`
The residual errors.
relativeErrors : :class:`~openturns.Point`
The relative errors.
basis : collection of :class:`~openturns.Basis`
Collection of the :math:`p` functional basis: :math:`(\\\\varphi_j^l)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]` with :math:`\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset`.
Its size must be equal to zero if the trend is not estimated.
trendCoefficients : collection of :class:`~openturns.Point`
The trend coeffient vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`.
covarianceModel : :class:`~openturns.CovarianceModel`
Covariance function of the normal process.
covarianceCoefficients : 2-d sequence of float
The :math:`\\\\vect{\\\\gamma}` defined in :eq:`gammaEq`.
covarianceCholeskyFactor : :class:`~openturns.TriangularMatrix`
The Cholesky factor :math:`\\\\mat{L}` of :math:`\\\\mat{C}`.
covarianceHMatrix : :class:`~openturns.HMatrix`
The *hmat* implementation of :math:`\\\\mat{L}`.
Notes
-----
The Kriging meta model :math:`\\\\tilde{\\\\cM}` is defined by:
.. math::
:label: metaModelKrig
\\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\,| \\\\,\\\\cC}
where :math:`\\\\cC` is the condition :math:`\\\\vect{Y}(\\\\omega, \\\\vect{x}_k) = \\\\vect{y}_k` for each :math:`k \\\\in [1, N]`.
Equation :eq:`metaModelKrig` writes:
.. math::
\\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x}), (\\\\vect{Y}(\\\\omega,\\\\vect{x}_1),\\\\dots,\\\\vect{Y}(\\\\omega, \\\\vect{x}_N))}\\\\vect{\\\\gamma}
where
.. math::
\\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x}), (\\\\vect{Y}(\\\\omega, \\\\vect{x}_1),\\\\dots,\\\\vect{Y}(\\\\omega, \\\\vect{x}_N))} = \\\\left(\\\\mat{C}(\\\\vect{x},\\\\vect{x}_1)|\\\\dots|\\\\mat{C}(\\\\vect{x},\\\\vect{x}_N)\\\\right)\\\\in \\\\cM_{p,NP}(\\\\Rset)
and
.. math::
:label: gammaEq
\\\\vect{\\\\gamma} = \\\\mat{C}^{-1}(\\\\vect{y}-\\\\vect{m})
At the end, the meta model writes:
.. math::
:label: metaModelKrigFinal
\\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\sum_{i=1}^N \\\\gamma_i \\\\mat{C}(\\\\vect{x},\\\\vect{x}_i)
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x'], ['x * sin(x)'])
>>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
>>> sampleY = f(sampleX)
Create the algorithm:
>>> basis = ot.Basis([ot.SymbolicFunction(['x'], ['x']), ot.SymbolicFunction(['x'], ['x^2'])])
>>> covarianceModel = ot.GeneralizedExponential([2.0], 2.0)
>>> algoKriging = ot.KrigingAlgorithm(sampleX, sampleY, covarianceModel, basis)
>>> algoKriging.run()
Get the result:
>>> resKriging = algoKriging.getResult()
Get the meta model:
>>> metaModel = resKriging.getMetaModel()
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getCovarianceCoefficients
"Accessor to the covariance coefficients.
Returns
-------
covCoeff : :class:`~openturns.Sample`
The :math:`\\\\vect{\\\\gamma}` defined in :eq:`gammaEq`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getTrendCoefficients
"Accessor to the trend coefficients.
Returns
-------
trendCoef : collection of :class:`~openturns.Point`
The trend coefficients vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getCovarianceModel
"Accessor to the covariance model.
Returns
-------
covModel : :class:`~openturns.CovarianceModel`
The covariance model of the Normal process *W* with its optimized parameters.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getBasisCollection
"Accessor to the collection of basis.
Returns
-------
basisCollection : collection of :class:`~openturns.Basis`
Collection of the :math:`p` function basis: :math:`(\\\\varphi_j^l)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]` with :math:`\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset`.
Notes
-----
If the trend is not estimated, the collection is empty.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getConditionalMean
"Compute the expected mean of the Gaussian process on a point or a sample of points.
Available usages:
getConditionalMean(x)
getConditionalMean(sampleX)
Parameters
----------
x : sequence of float
The point :math:`\\\\vect{x}` where the conditional mean of the output has to be evaluated.
sampleX : 2-d sequence of float
The sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)` where the conditional mean of the output has to be evaluated (*M* can be equal to 1).
Returns
-------
condMean : :class:`~openturns.Point`
The conditional mean :math:`\\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\, | \\\\, \\\\cC}` at point :math:`\\\\vect{x}`.
Or the conditional mean matrix at the sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)`:
.. math::
\\\\left(
\\\\begin{array}{l}
\\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_1)\\\\, | \\\\, \\\\cC}\\\\\\\\
\\\\dots \\\\\\\\
\\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_M)\\\\, | \\\\, \\\\cC}
\\\\end{array}
\\\\right)
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getConditionalCovariance
"Compute the expected covariance of the Gaussian process on a point (or several points).
Available usages:
getConditionalCovariance(x)
getConditionalCovariance(sampleX)
Parameters
----------
x : sequence of float
The point :math:`\\\\vect{x}` where the conditional mean of the output has to be evaluated.
sampleX : 2-d sequence of float
The sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)` where the conditional mean of the output has to be evaluated (*M* can be equal to 1).
Returns
-------
condCov : :class:`~openturns.CovarianceMatrix`
The conditional covariance :math:`\\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\, | \\\\, \\\\cC}` at point :math:`\\\\vect{x}`.
Or the conditional covariance matrix at the sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)`:
.. math::
\\\\left(
\\\\begin{array}{lcl}
\\\\Sigma_{11} & \\\\dots & \\\\Sigma_{1M} \\\\\\\\
\\\\dots \\\\\\\\
\\\\Sigma_{M1} & \\\\dots & \\\\Sigma_{MM}
\\\\end{array}
\\\\right)
where :math:`\\\\Sigma_{ij} = \\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_i), \\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_j)\\\\, | \\\\, \\\\cC}`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getMetaModel
"Accessor to the metamodel.
Returns
-------
metaModel : :class:`~openturns.Function`
The meta model :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:`metaModelKrigFinal`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::setTransformation
"Accessor to the normalizing transformation.
Parameters
----------
transformation : :class:`~openturns.Function`
The transformation *T* that normalizes the input sample."
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getTransformation
"Accessor to the normalizing transformation.
Returns
-------
transformation : :class:`~openturns.Function`
The transformation *T* that normalizes the input sample."
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getInputSample
"Accessor to the input sample.
Returns
-------
inputSample : :class:`~openturns.Sample`
The input sample."
// ---------------------------------------------------------------------
%feature("docstring") OT::KrigingResult::getOutputSample
"Accessor to the output sample.
Returns
-------
outputSample : :class:`~openturns.Sample`
The output sample."
|