This file is indexed.

/usr/include/openturns/swig/KrigingResult_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
%feature("docstring") OT::KrigingResult
"Kriging result.

Available constructors:
    KrigingResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCoefficients*)

    KrigingResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCoefficients, covarianceCholeskyFactor, covarianceHMatrix*)


Parameters
----------
inputSample, outputSample : 2-d sequence of float
    The samples :math:`(\\\\vect{x}_k)_{1 \\\\leq k \\\\leq N} \\\\in \\\\Rset^d` and :math:`(\\\\vect{y}_k)_{1 \\\\leq k \\\\leq N}\\\\in \\\\Rset^p`.
metaModel : :class:`~openturns.Function`
    The meta model: :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:`metaModelKrigFinal`.
residuals : :class:`~openturns.Point`
    The residual errors.
relativeErrors : :class:`~openturns.Point`
    The relative errors.
basis : collection of :class:`~openturns.Basis`
    Collection of the  :math:`p` functional basis: :math:`(\\\\varphi_j^l)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]` with :math:`\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset`.
    Its size must be equal to zero if the trend is not estimated.
trendCoefficients : collection of :class:`~openturns.Point`
   The trend coeffient vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`.
covarianceModel : :class:`~openturns.CovarianceModel`
    Covariance function of the normal process.
covarianceCoefficients : 2-d sequence of float
    The :math:`\\\\vect{\\\\gamma}` defined in :eq:`gammaEq`.
covarianceCholeskyFactor : :class:`~openturns.TriangularMatrix`
    The Cholesky factor :math:`\\\\mat{L}` of :math:`\\\\mat{C}`.
covarianceHMatrix :  :class:`~openturns.HMatrix`
    The *hmat* implementation of :math:`\\\\mat{L}`.


Notes
-----
The Kriging meta model :math:`\\\\tilde{\\\\cM}` is defined by:

.. math::
    :label: metaModelKrig
    
    \\\\tilde{\\\\cM}(\\\\vect{x}) =  \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\,| \\\\,\\\\cC}

where :math:`\\\\cC` is the condition :math:`\\\\vect{Y}(\\\\omega, \\\\vect{x}_k) = \\\\vect{y}_k` for each :math:`k \\\\in [1, N]`.
    
Equation :eq:`metaModelKrig` writes:

.. math::

    \\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x}), (\\\\vect{Y}(\\\\omega,\\\\vect{x}_1),\\\\dots,\\\\vect{Y}(\\\\omega, \\\\vect{x}_N))}\\\\vect{\\\\gamma}

where 

.. math::

    \\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x}), (\\\\vect{Y}(\\\\omega, \\\\vect{x}_1),\\\\dots,\\\\vect{Y}(\\\\omega, \\\\vect{x}_N))} = \\\\left(\\\\mat{C}(\\\\vect{x},\\\\vect{x}_1)|\\\\dots|\\\\mat{C}(\\\\vect{x},\\\\vect{x}_N)\\\\right)\\\\in \\\\cM_{p,NP}(\\\\Rset)

and 

.. math::
    :label: gammaEq

    \\\\vect{\\\\gamma} = \\\\mat{C}^{-1}(\\\\vect{y}-\\\\vect{m})

At the end, the meta model writes:

.. math::
    :label: metaModelKrigFinal

    \\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\vect{\\\\mu}(\\\\vect{x}) + \\\\sum_{i=1}^N \\\\gamma_i  \\\\mat{C}(\\\\vect{x},\\\\vect{x}_i)




Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x'],  ['x * sin(x)'])
>>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
>>> sampleY = f(sampleX)

Create the algorithm:

>>> basis = ot.Basis([ot.SymbolicFunction(['x'], ['x']), ot.SymbolicFunction(['x'], ['x^2'])])
>>> covarianceModel = ot.GeneralizedExponential([2.0], 2.0)
>>> algoKriging = ot.KrigingAlgorithm(sampleX, sampleY, covarianceModel, basis)
>>> algoKriging.run()

Get the result:

>>> resKriging = algoKriging.getResult()

Get the meta model:

>>> metaModel = resKriging.getMetaModel()
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getCovarianceCoefficients
"Accessor to the covariance coefficients.

Returns
-------
covCoeff : :class:`~openturns.Sample`
    The :math:`\\\\vect{\\\\gamma}` defined in :eq:`gammaEq`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getTrendCoefficients
"Accessor to the trend coefficients.

Returns
-------
trendCoef : collection of :class:`~openturns.Point`
    The trend coefficients vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getCovarianceModel
"Accessor to the covariance model.

Returns
-------
covModel : :class:`~openturns.CovarianceModel`
    The covariance model of the Normal process *W* with its optimized parameters.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getBasisCollection
"Accessor to the collection of basis.

Returns
-------
basisCollection : collection of :class:`~openturns.Basis`
    Collection of the :math:`p` function basis: :math:`(\\\\varphi_j^l)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]` with :math:`\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset`.

Notes
-----
If the trend is not estimated, the collection is empty. 
"


// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getConditionalMean
"Compute the expected mean of the Gaussian process on a point or a sample of points.

Available usages:
    getConditionalMean(x)

    getConditionalMean(sampleX)

Parameters
----------
x : sequence of float
    The point :math:`\\\\vect{x}` where the conditional mean of the output has to be evaluated.
sampleX : 2-d sequence of float
     The sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)` where the conditional mean of the output has to be evaluated (*M* can be equal to 1).

Returns
-------
condMean : :class:`~openturns.Point`
    The conditional mean :math:`\\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\, | \\\\,  \\\\cC}` at point :math:`\\\\vect{x}`.
   
    Or the conditional mean matrix at the sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)`:

.. math::

    \\\\left(
      \\\\begin{array}{l}
         \\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_1)\\\\, | \\\\,  \\\\cC}\\\\\\\\
        \\\\dots  \\\\\\\\
        \\\\Expect{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_M)\\\\, | \\\\,  \\\\cC}
       \\\\end{array}
     \\\\right)

"


// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getConditionalCovariance
"Compute the expected covariance of the Gaussian process on a point (or several points).

Available usages:
    getConditionalCovariance(x)

    getConditionalCovariance(sampleX)

Parameters
----------
x : sequence of float
    The point :math:`\\\\vect{x}` where the conditional mean of the output has to be evaluated.
sampleX : 2-d sequence of float
     The sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)` where the conditional mean of the output has to be evaluated (*M* can be equal to 1).

Returns
-------
condCov : :class:`~openturns.CovarianceMatrix`
    The conditional covariance :math:`\\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{x})\\\\, | \\\\,  \\\\cC}` at point :math:`\\\\vect{x}`.
   
    Or the conditional covariance matrix at the sample :math:`(\\\\vect{\\\\xi}_1, \\\\dots, \\\\vect{\\\\xi}_M)`:

.. math::

    \\\\left(
      \\\\begin{array}{lcl}
         \\\\Sigma_{11} & \\\\dots & \\\\Sigma_{1M} \\\\\\\\
        \\\\dots  \\\\\\\\
        \\\\Sigma_{M1} & \\\\dots & \\\\Sigma_{MM}
       \\\\end{array}
     \\\\right)

where :math:`\\\\Sigma_{ij} = \\\\Cov{\\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_i), \\\\vect{Y}(\\\\omega, \\\\vect{\\\\xi}_j)\\\\, | \\\\,  \\\\cC}`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getMetaModel
"Accessor to the metamodel.

Returns
-------
metaModel : :class:`~openturns.Function`
    The meta model :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:`metaModelKrigFinal`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::setTransformation
"Accessor to the normalizing transformation.

Parameters
----------
transformation : :class:`~openturns.Function`
    The transformation *T* that normalizes the input sample."

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getTransformation
"Accessor to the normalizing transformation.

Returns
-------
transformation : :class:`~openturns.Function`
    The transformation *T* that normalizes the input sample."

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getInputSample
"Accessor to the input sample.

Returns
-------
inputSample : :class:`~openturns.Sample`
    The input sample."

// ---------------------------------------------------------------------

%feature("docstring") OT::KrigingResult::getOutputSample
"Accessor to the output sample.

Returns
-------
outputSample : :class:`~openturns.Sample`
    The output sample."