This file is indexed.

/usr/include/openturns/swig/KarhunenLoeveResultImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
%define OT_KarhunenLoeveResult_doc
"Result structure of a Karhunen Loeve algorithm.

Available constructors:
    KarhunenLoeveResult(*implementation*)

    KarhunenLoeveResult(*covModel, s, lambda, modes, modesAsProcessSample, projection*)

Parameters
----------
implementation : :class:`~openturns.KarhunenLoeveResultImplementation`
    A specific implementation.
covModel : :class:`~openturns.CovarianceModel`
    The covariance model.
s : float, positive
    The minimal relative amplitude of the eigenvalues to consider in the decomposition wrt the maximum eigenvalue.
lambda : :class:`~openturns.Point`
    The first eigenvalues of the Fredholm problem.
modes : :class:`~openturns.Basis`
    The first modes  of the Fredholm problem.
modesAsProcessSample : :class:`~openturns.ProcessSample`
    The values of the modes on the mesh associated to the KarhunenLoeve algorithm.
projection : :class:`~openturns.Matrix`
    The projection matrix.

Notes
-----
Structure generally created by the method run() of a :class:`~openturns.KarhunenLoeveAlgorithm` and obtained thanks to the method getResult().

We consider :math:`C:\\\\cD \\\\times \\\\cD \\\\rightarrow  \\\\cS^+_d(\\\\Rset)` a covariance function defined on :math:`\\\\cD \\\\in \\\\Rset^n`, continuous at :math:`\\\\vect{0}`.

We note :math:`(\\\\lambda_k,  \\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` the solutions of the Fredholm problem associated to  :math:`C` where *K* is the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1`.

We note :math:`\\\\vect{\\\\lambda}` the eigenvalues sequence and :math:`\\\\vect{\\\\varphi}` the eigenfunctions sequence.

Then we define the linear projection function :math:`\\\\pi_{ \\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` by:

.. math::
    :label: projection

    \\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}: \\\\left|
      \\\\begin{array}{ccl}
        L^2(\\\\cD, \\\\Rset^d) & \\\\rightarrow & \\\\cS^{\\\\Nset} \\\\\\\\
        f & \\\\mapsto &\\\\left(\\\\dfrac{1}{\\\\sqrt{\\\\lambda_k}}\\\\int_{\\\\cD}f(\\\\vect{t}) \\\\vect{\\\\varphi}_k(\\\\vect{t})\\\\, d\\\\vect{t}\\\\right)_{k \\\\geq 1}
      \\\\end{array}
    \\\\right.

where :math:`\\\\cS^{\\\\Nset}  = \\\\left \\\\{ (\\\\zeta_k)_{k \\\\geq 1} \\\\in  \\\\Rset^{\\\\Nset} \\\\, | \\\\, \\\\sum_{k=1}^{\\\\infty}\\\\lambda_k \\\\zeta_k^2 < +\\\\infty \\\\right \\\\}`. 

The integral of :eq:`projection` can be discretized according to the chosen Karhunen Loeve algorithm: on the vertices of the domain :math:`\\\\cD_N` in the case of a :math:`P_1` algorithm, on the weighted experiment in the case of the quadrature method.  Then function :math:`f` can be reduced to its values on that discretization domain. Besides, we can restrict the sequences  :math:`(\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi})` to the :math:`K` terms associated to the highest eigenvalues. Thus, following these discretizations, the function :math:`\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` has a matrical representation.

The inverse of :math:`\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` is the lift function defined by:

.. math::
    :label: lift

    \\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}^{-1}: \\\\left|
      \\\\begin{array}{ccl}
         \\\\cS^{\\\\Nset} & \\\\rightarrow & L^2(\\\\cD, \\\\Rset^d)\\\\\\\\
        (\\\\xi_k)_{k \\\\geq 1} & \\\\mapsto & f(.) = \\\\sum_{k \\\\geq 1} \\\\sqrt{\\\\lambda_k}\\\\xi_k \\\\vect{\\\\varphi}_k(.)
      \\\\end{array}
    \\\\right.

If the function :math:`f(.) = X(\\\\omega_0, .)` where :math:`X` is the centered process which covariance function is associated to the eigenvalues and eigenfunctions :math:`(\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi})`, then the *getEigenValues* method enables to obtain the :math:`K` first eigenvalues of the Karhunen Loeve decomposition of :math:`X` and the method *getModes* enables to get the associated modes.

Examples
--------
>>> import openturns as ot
>>> N = 256
>>> mesh = ot.IntervalMesher([N - 1]).build(ot.Interval(-1, 1))
>>> covariance_X = ot.AbsoluteExponential([1])
>>> process_X = ot.GaussianProcess(covariance_X, mesh)
>>> threshold = 0.001
>>> algo_X = ot.KarhunenLoeveP1Algorithm(mesh, covariance_X, threshold)
>>> algo_X.run()
>>> result_X = algo_X.getResult()"
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation
OT_KarhunenLoeveResult_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getThreshold_doc
"Accessor to the limit ratio on eigenvalues.

Returns
-------
s : float, positive
    The minimal relative amplitude of the eigenvalues to consider in the decomposition wrt the maximum eigenvalue.

Notes
-----
OpenTURNS truncates the sequence :math:`(\\\\lambda_k,  \\\\vect{\\\\varphi}_k)_{k \\\\geq 1}`  at the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getThreshold
OT_KarhunenLoeveResult_getThreshold_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getCovarianceModel_doc
"Accessor to the covariance model.

Returns
-------
covModel : :class:`~openturns.CovarianceModel`
    The covariance model."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getCovarianceModel
OT_KarhunenLoeveResult_getCovarianceModel_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getEigenValues_doc
"Accessor to the eigen values of the Karhunen Loeve decomposition.

Returns
-------
eigenVal : :class:`~openturns.Point`
    The most significant eigenvalues.

Notes
-----
OpenTURNS truncates the sequence :math:`(\\\\lambda_k,  \\\\vect{\\\\varphi}_k)_{k \\\\geq 1}`  at the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1` where :math:`s` is the threshold fixed by the User."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getEigenValues
OT_KarhunenLoeveResult_getEigenValues_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getModesAsProcessSample_doc
"Accessor to the modes as a process sample.

Returns
-------
modesAsProcessSample : :class:`~openturns.ProcessSample`
    The values of each mode on a mesh whose vertices were used to discretize the
    Fredholm equation.

Notes
-----
The modes :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` are evaluated on the vertices of the mesh defining the process sample. The values of the i-th field are the values of the i-th mode on these vertices.

The mesh corresponds to the discretization points of the integral in :eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getModesAsProcessSample
OT_KarhunenLoeveResult_getModesAsProcessSample_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getScaledModesAsProcessSample_doc
"Accessor to the scaled modes as a process sample.

Returns
-------
modesAsProcessSample : :class:`~openturns.ProcessSample`
    The values of each scaled mode on a mesh whose vertices were used to
    discretize the Fredholm equation.

Notes
-----
The modes :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` are evaluated on the
vertices of the mesh defining the process sample. The values of the i-th field
are the values of the i-th mode on these vertices.

The mesh corresponds to the discretization points of the integral in
 :eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getScaledModesAsProcessSample
OT_KarhunenLoeveResult_getScaledModesAsProcessSample_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getProjectionMatrix_doc
"Accessor to the projection matrix.

Returns
-------
projection : :class:`~openturns.Matrix`
    The projection matrix associated to the discretized version of :eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getProjectionMatrix
OT_KarhunenLoeveResult_getProjectionMatrix_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_project_doc
"Project a function or a field on the eigen modes basis.

Available constructors:
    project(*function*)

    project(*field*)

Parameters
----------
function : :class:`~openturns.Function`
    A function.
field :  :class:`~openturns.Field`
    A field.

Notes
-----
The *project* method calculates the projection :eq:`projection` on a field or a
function where only the first :math:`K` elements of the sequence are calculated.
:math:`K` is determined by the :math:`s` parameter fixed by the User."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::project
OT_KarhunenLoeveResult_project_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getModes_doc
"Get the modes as functions.

Returns
-------
modes : :class:`~openturns.Basis`
    The truncated basis :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`.

Notes
-----
The basis is truncated to :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` where
:math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getModes
OT_KarhunenLoeveResult_getModes_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_getScaledModes_doc
"Get the modes as functions scaled by the square-root of the corresponding eigenvalue.

Returns
-------
modes : :class:`~openturns.Basis`
    The truncated basis :math:`(\\\\sqrt{\\\\lambda_k}\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`.

Notes
-----
The basis is truncated to :math:`(\\\\sqrt{\\\\lambda_k}\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`
where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getScaledModes
OT_KarhunenLoeveResult_getScaledModes_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_lift_doc
"Lift the coefficients into a function.

Parameters
----------
coef : :class:`~openturns.Point`
    The coefficients :math:`(\\\\xi_1, \\\\dots, \\\\xi_K)`.

Returns
-------
modes : :class:`~openturns.Function`
    The function :math:`f` defined in :eq:`lift`.

Notes
-----
The sum defining :math:`f` is truncated to the first :math:`K` terms, where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::lift
OT_KarhunenLoeveResult_lift_doc

// ---------------------------------------------------------------------

%define OT_KarhunenLoeveResult_liftAsField_doc
"Lift the coefficients into a field.

Parameters
----------
coef : :class:`~openturns.Point`
    The coefficients :math:`(\\\\xi_1, \\\\dots, \\\\xi_K)`.

Returns
-------
modes : :class:`~openturns.Field`
    The function :math:`f` defined in :eq:`lift` evaluated on the mesh associated to the discretization of :eq:`projection`.

Notes
-----
The sum defining :math:`f` is truncated to the first :math:`K` terms, where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::liftAsField
OT_KarhunenLoeveResult_liftAsField_doc