/usr/include/openturns/swig/KarhunenLoeveResultImplementation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | %define OT_KarhunenLoeveResult_doc
"Result structure of a Karhunen Loeve algorithm.
Available constructors:
KarhunenLoeveResult(*implementation*)
KarhunenLoeveResult(*covModel, s, lambda, modes, modesAsProcessSample, projection*)
Parameters
----------
implementation : :class:`~openturns.KarhunenLoeveResultImplementation`
A specific implementation.
covModel : :class:`~openturns.CovarianceModel`
The covariance model.
s : float, positive
The minimal relative amplitude of the eigenvalues to consider in the decomposition wrt the maximum eigenvalue.
lambda : :class:`~openturns.Point`
The first eigenvalues of the Fredholm problem.
modes : :class:`~openturns.Basis`
The first modes of the Fredholm problem.
modesAsProcessSample : :class:`~openturns.ProcessSample`
The values of the modes on the mesh associated to the KarhunenLoeve algorithm.
projection : :class:`~openturns.Matrix`
The projection matrix.
Notes
-----
Structure generally created by the method run() of a :class:`~openturns.KarhunenLoeveAlgorithm` and obtained thanks to the method getResult().
We consider :math:`C:\\\\cD \\\\times \\\\cD \\\\rightarrow \\\\cS^+_d(\\\\Rset)` a covariance function defined on :math:`\\\\cD \\\\in \\\\Rset^n`, continuous at :math:`\\\\vect{0}`.
We note :math:`(\\\\lambda_k, \\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` the solutions of the Fredholm problem associated to :math:`C` where *K* is the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1`.
We note :math:`\\\\vect{\\\\lambda}` the eigenvalues sequence and :math:`\\\\vect{\\\\varphi}` the eigenfunctions sequence.
Then we define the linear projection function :math:`\\\\pi_{ \\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` by:
.. math::
:label: projection
\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}: \\\\left|
\\\\begin{array}{ccl}
L^2(\\\\cD, \\\\Rset^d) & \\\\rightarrow & \\\\cS^{\\\\Nset} \\\\\\\\
f & \\\\mapsto &\\\\left(\\\\dfrac{1}{\\\\sqrt{\\\\lambda_k}}\\\\int_{\\\\cD}f(\\\\vect{t}) \\\\vect{\\\\varphi}_k(\\\\vect{t})\\\\, d\\\\vect{t}\\\\right)_{k \\\\geq 1}
\\\\end{array}
\\\\right.
where :math:`\\\\cS^{\\\\Nset} = \\\\left \\\\{ (\\\\zeta_k)_{k \\\\geq 1} \\\\in \\\\Rset^{\\\\Nset} \\\\, | \\\\, \\\\sum_{k=1}^{\\\\infty}\\\\lambda_k \\\\zeta_k^2 < +\\\\infty \\\\right \\\\}`.
The integral of :eq:`projection` can be discretized according to the chosen Karhunen Loeve algorithm: on the vertices of the domain :math:`\\\\cD_N` in the case of a :math:`P_1` algorithm, on the weighted experiment in the case of the quadrature method. Then function :math:`f` can be reduced to its values on that discretization domain. Besides, we can restrict the sequences :math:`(\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi})` to the :math:`K` terms associated to the highest eigenvalues. Thus, following these discretizations, the function :math:`\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` has a matrical representation.
The inverse of :math:`\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}` is the lift function defined by:
.. math::
:label: lift
\\\\pi_{\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi}}^{-1}: \\\\left|
\\\\begin{array}{ccl}
\\\\cS^{\\\\Nset} & \\\\rightarrow & L^2(\\\\cD, \\\\Rset^d)\\\\\\\\
(\\\\xi_k)_{k \\\\geq 1} & \\\\mapsto & f(.) = \\\\sum_{k \\\\geq 1} \\\\sqrt{\\\\lambda_k}\\\\xi_k \\\\vect{\\\\varphi}_k(.)
\\\\end{array}
\\\\right.
If the function :math:`f(.) = X(\\\\omega_0, .)` where :math:`X` is the centered process which covariance function is associated to the eigenvalues and eigenfunctions :math:`(\\\\vect{\\\\lambda}, \\\\vect{\\\\varphi})`, then the *getEigenValues* method enables to obtain the :math:`K` first eigenvalues of the Karhunen Loeve decomposition of :math:`X` and the method *getModes* enables to get the associated modes.
Examples
--------
>>> import openturns as ot
>>> N = 256
>>> mesh = ot.IntervalMesher([N - 1]).build(ot.Interval(-1, 1))
>>> covariance_X = ot.AbsoluteExponential([1])
>>> process_X = ot.GaussianProcess(covariance_X, mesh)
>>> threshold = 0.001
>>> algo_X = ot.KarhunenLoeveP1Algorithm(mesh, covariance_X, threshold)
>>> algo_X.run()
>>> result_X = algo_X.getResult()"
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation
OT_KarhunenLoeveResult_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getThreshold_doc
"Accessor to the limit ratio on eigenvalues.
Returns
-------
s : float, positive
The minimal relative amplitude of the eigenvalues to consider in the decomposition wrt the maximum eigenvalue.
Notes
-----
OpenTURNS truncates the sequence :math:`(\\\\lambda_k, \\\\vect{\\\\varphi}_k)_{k \\\\geq 1}` at the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getThreshold
OT_KarhunenLoeveResult_getThreshold_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getCovarianceModel_doc
"Accessor to the covariance model.
Returns
-------
covModel : :class:`~openturns.CovarianceModel`
The covariance model."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getCovarianceModel
OT_KarhunenLoeveResult_getCovarianceModel_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getEigenValues_doc
"Accessor to the eigen values of the Karhunen Loeve decomposition.
Returns
-------
eigenVal : :class:`~openturns.Point`
The most significant eigenvalues.
Notes
-----
OpenTURNS truncates the sequence :math:`(\\\\lambda_k, \\\\vect{\\\\varphi}_k)_{k \\\\geq 1}` at the highest index :math:`K` such that :math:`\\\\lambda_K \\\\geq s \\\\lambda_1` where :math:`s` is the threshold fixed by the User."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getEigenValues
OT_KarhunenLoeveResult_getEigenValues_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getModesAsProcessSample_doc
"Accessor to the modes as a process sample.
Returns
-------
modesAsProcessSample : :class:`~openturns.ProcessSample`
The values of each mode on a mesh whose vertices were used to discretize the
Fredholm equation.
Notes
-----
The modes :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` are evaluated on the vertices of the mesh defining the process sample. The values of the i-th field are the values of the i-th mode on these vertices.
The mesh corresponds to the discretization points of the integral in :eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getModesAsProcessSample
OT_KarhunenLoeveResult_getModesAsProcessSample_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getScaledModesAsProcessSample_doc
"Accessor to the scaled modes as a process sample.
Returns
-------
modesAsProcessSample : :class:`~openturns.ProcessSample`
The values of each scaled mode on a mesh whose vertices were used to
discretize the Fredholm equation.
Notes
-----
The modes :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` are evaluated on the
vertices of the mesh defining the process sample. The values of the i-th field
are the values of the i-th mode on these vertices.
The mesh corresponds to the discretization points of the integral in
:eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getScaledModesAsProcessSample
OT_KarhunenLoeveResult_getScaledModesAsProcessSample_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getProjectionMatrix_doc
"Accessor to the projection matrix.
Returns
-------
projection : :class:`~openturns.Matrix`
The projection matrix associated to the discretized version of :eq:`projection`."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getProjectionMatrix
OT_KarhunenLoeveResult_getProjectionMatrix_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_project_doc
"Project a function or a field on the eigen modes basis.
Available constructors:
project(*function*)
project(*field*)
Parameters
----------
function : :class:`~openturns.Function`
A function.
field : :class:`~openturns.Field`
A field.
Notes
-----
The *project* method calculates the projection :eq:`projection` on a field or a
function where only the first :math:`K` elements of the sequence are calculated.
:math:`K` is determined by the :math:`s` parameter fixed by the User."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::project
OT_KarhunenLoeveResult_project_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getModes_doc
"Get the modes as functions.
Returns
-------
modes : :class:`~openturns.Basis`
The truncated basis :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`.
Notes
-----
The basis is truncated to :math:`(\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}` where
:math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getModes
OT_KarhunenLoeveResult_getModes_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_getScaledModes_doc
"Get the modes as functions scaled by the square-root of the corresponding eigenvalue.
Returns
-------
modes : :class:`~openturns.Basis`
The truncated basis :math:`(\\\\sqrt{\\\\lambda_k}\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`.
Notes
-----
The basis is truncated to :math:`(\\\\sqrt{\\\\lambda_k}\\\\vect{\\\\varphi}_k)_{1 \\\\leq k \\\\leq K}`
where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::getScaledModes
OT_KarhunenLoeveResult_getScaledModes_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_lift_doc
"Lift the coefficients into a function.
Parameters
----------
coef : :class:`~openturns.Point`
The coefficients :math:`(\\\\xi_1, \\\\dots, \\\\xi_K)`.
Returns
-------
modes : :class:`~openturns.Function`
The function :math:`f` defined in :eq:`lift`.
Notes
-----
The sum defining :math:`f` is truncated to the first :math:`K` terms, where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::lift
OT_KarhunenLoeveResult_lift_doc
// ---------------------------------------------------------------------
%define OT_KarhunenLoeveResult_liftAsField_doc
"Lift the coefficients into a field.
Parameters
----------
coef : :class:`~openturns.Point`
The coefficients :math:`(\\\\xi_1, \\\\dots, \\\\xi_K)`.
Returns
-------
modes : :class:`~openturns.Field`
The function :math:`f` defined in :eq:`lift` evaluated on the mesh associated to the discretization of :eq:`projection`.
Notes
-----
The sum defining :math:`f` is truncated to the first :math:`K` terms, where :math:`K` is fixed by the User through the :math:`s` parameter."
%enddef
%feature("docstring") OT::KarhunenLoeveResultImplementation::liftAsField
OT_KarhunenLoeveResult_liftAsField_doc
|