/usr/include/openturns/swig/InverseWishart_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | %feature("docstring") OT::InverseWishart
"Inverse-Wishart distribution.
Parameters
----------
v : 2-d sequence of float
Scale matrix, positive definite of size :math:`p`.
nu : float, :math:`\\\\nu > p - 1`
Degrees of freedom.
Examples
--------
Create a distribution:
>>> import openturns as ot
>>> distribution = ot.InverseWishart(ot.CovarianceMatrix([[1.0]]), 3.0)
Draw a sample:
>>> sample = distribution.getSample(5)"
// ---------------------------------------------------------------------
%feature("docstring") OT::InverseWishart::getNu
"Accessor to the degrees of freedom parameter.
Returns
-------
nu : float
Degrees of freedom."
// ---------------------------------------------------------------------
%feature("docstring") OT::InverseWishart::setNu
"Accessor to the degrees of freedom parameter.
Parameters
----------
nu : float, :math:`\\\\nu > 0`
Degrees of freedom."
// ---------------------------------------------------------------------
%feature("docstring") OT::InverseWishart::getV
"Accessor to the scale parameter.
Returns
-------
v : :class:`~openturns.CovarianceMatrix`
Scale matrix, positive definite of size :math:`p`."
// ---------------------------------------------------------------------
%feature("docstring") OT::InverseWishart::setV
"Accessor to the scale parameter.
Parameters
----------
v : 2-d sequence of float
Scale matrix, positive definite of size :math:`p`."
// ---------------------------------------------------------------------
%feature("docstring") OT::InverseWishart::getRealizationAsMatrix
"Get one realization of the distribution as a covariance matrix.
Returns
-------
v : :class:`~openturns.CovarianceMatrix`
A realization as a matrix"
|