/usr/include/openturns/swig/HypothesisTest_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | %feature("docstring") OT::HypothesisTest::ChiSquared
"Test whether two discrete samples are independent.
**Available usages**:
HypothesisTest.ChiSquared(*firstSample, secondSample*)
HypothesisTest.ChiSquared(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension 1.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Pearson, HypothesisTest_Spearman
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distCol = [ot.Normal(), ot.Normal()]
>>> distribution = ot.ComposedDistribution(distCol)
>>> sample = distribution.getSample(30)
>>> test_result = ot.HypothesisTest.ChiSquared(sample[:,0], sample[:,1])
>>> print(test_result)
class=TestResult name=Unnamed type=TwoSampleChiSquared binaryQualityMeasure=true p-value threshold=0.05 p-value=0.237197 description=[]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::FullPearson
"Test whether two discrete samples are independent.
**Available usages**:
HypothesisTest.FullPearson(*firstSample, secondSample*)
HypothesisTest.FullPearson(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Pearson, HypothesisTest_PartialPearson
Notes
-----
The Full Pearson Test is the independence Pearson test between 2 samples :
*firstSample* of dimension *n* and *secondSample* of dimension 1. If
*firstSample[i]* is the numerical sample extracted from *firstSample*
(:math:`i^{th}` coordinate of each point of the numerical sample), FullPearson
performs the independence Pearson test simultaneously on *firstSample[i]* and
secondSample. For all *i*, it is supposed that the couple (*firstSample[i]* and
*secondSample*) is issued from a gaussian vector.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distCol = [ot.Normal()] * 3
>>> S = ot.CorrelationMatrix(3)
>>> S[0, 2] = 0.9
>>> copula = ot.NormalCopula(S)
>>> distribution = ot.ComposedDistribution(distCol, copula)
>>> sample = distribution.getSample(30)
>>> firstSample = sample[:, :2]
>>> secondSample = sample[:, 2]
>>> test_result = ot.HypothesisTest.FullPearson(firstSample, secondSample)
>>> print(test_result)
[class=TestResult name=Unnamed type=Pearson binaryQualityMeasure=false p-value threshold=0.05 p-value=7.23...e-14 description=[],class=TestResult name=Unnamed type=Pearson binaryQualityMeasure=true p-value threshold=0.05 p-value=0.895124 description=[]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::FullRegression
"Test whether two discrete samples are not linear.
**Available usages**:
HypothesisTest.FullRegression(*firstSample, secondSample*)
HypothesisTest.FullRegression(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_PartialRegression, LinearModelTest_LinearModelFisher
Notes
-----
The Full Regression Test is used to check the quality of the linear regression
model between two samples: *firstSample* of dimension *n* and *secondSample* of
dimension 1. If *firstSample[i]* is the numerical sample extracted from
*firstSample* (:math:`i^{th}` coordinate of each point of the numerical sample),
FullRegression performs the linear regression test simultaneously on all
*firstSample[i]* and *secondSample*. The linear regression test tests if the
linear regression model between two scalar numerical samples is not significant.
It is based on the deviation analysis of the regression. The Fisher distribution
is used.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> dim = 3
>>> distCol = [ot.Normal()] * dim
>>> S = ot.CorrelationMatrix(dim)
>>> S[0, dim - 1] = 0.99
>>> copula = ot.NormalCopula(S)
>>> distribution = ot.ComposedDistribution(distCol, copula)
>>> sample = distribution.getSample(30)
>>> firstSample = sample[:, :2]
>>> secondSample = sample[:, 2]
>>> test_result = ot.HypothesisTest.FullRegression(firstSample, secondSample)
>>> print(test_result)
[class=TestResult name=Unnamed type=Regression binaryQualityMeasure=false p-value threshold=0.05 p-value=9.70282e-27 description=[],class=TestResult name=Unnamed type=Regression binaryQualityMeasure=true p-value threshold=0.05 p-value=0.11352 description=[]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::FullSpearman
"Test whether two discrete samples are not monotonous.
**Available usages**:
HypothesisTest.FullSpearman(*firstSample, secondSample*)
HypothesisTest.FullSpearman(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Spearman, HypothesisTest_PartialSpearman
Notes
-----
The Full Spearman Test is used to check hypothesis of non monotonous relation
between two samples: *firstSample* of dimension *n* and *secondSample* of
dimension 1. If *firstSample[i]* is the numerical sample extracted from
*firstSample* (:math:`i^{th}` coordinate of each point of the numerical sample),
FullSpearman performs the independence Spearman test simultaneously on all
*firstSample[i]* and *secondSample*.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction(['x'], ['x', 'x^2'])
>>> testedSample = func(sample)
>>> test_result = ot.HypothesisTest.FullSpearman(testedSample, sample)
>>> print(test_result)
[class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=false p-value threshold=0.05 p-value=0 description=[],class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=true p-value threshold=0.05 p-value=0.44348 description=[]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::PartialPearson
"Test whether two discrete samples are independent.
**Available usages**:
HypothesisTest.PartialPearson(*firstSample, secondSample, selection*)
HypothesisTest.PartialPearson(*firstSample, secondSample, selection, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
selection : sequence of integers, maximum integer value :math:`< n`
List of indices selecting which subsets of the first sample will successively
be tested with the second sample through the Pearson test.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Pearson, HypothesisTest_FullPearson
Notes
-----
The Partial Pearson Test is used to check the independence between two samples:
*firstSample* of dimension *n* and *secondSample* of dimension 1. The parameter
*selection* enables to select specific subsets of the *firstSample* to be tested.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distCol = [ot.Normal(), ot.Normal(), ot.Normal(), ot.Normal()]
>>> S = ot.CorrelationMatrix(4)
>>> S[0, 3] = 0.9
>>> copula = ot.NormalCopula(S)
>>> distribution = ot.ComposedDistribution(distCol, copula)
>>> sample = distribution.getSample(30)
>>> firstSample = sample[:, :3]
>>> secondSample = sample[:, 3]
>>> test_result = ot.HypothesisTest.PartialPearson(firstSample, secondSample, [0, 2])
>>> print(test_result)
[class=TestResult name=Unnamed type=Pearson binaryQualityMeasure=false p-value threshold=0.05 p-value=1.17002e-10 description=[],class=TestResult name=Unnamed type=Pearson binaryQualityMeasure=true p-value threshold=0.05 p-value=0.19193 description=[]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::PartialRegression
"Test whether two discrete samples are independent.
**Available usages**:
HypothesisTest.PartialRegression(*firstSample, secondSample, selection*)
HypothesisTest.PartialRegression(*firstSample, secondSample, selection, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
selection : sequence of int, maximum integer value :math:`< n`
List of indices selecting which subsets of the first sample will successively
be tested with the second sample through the regression test.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_FullRegression, LinearModelTest_LinearModelFisher
Notes
-----
The Partial Regression Test is used to check the quality of the linear regression
AnalyticalFmodel between two samples: *firstSample* of dimension *n* and *secondSample* of
dimension 1. The parameter *selection* enables to select specific subsets of the
*firstSample* to be tested.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> dim = 3
>>> distCol = [ot.Normal()] * dim
>>> S = ot.CorrelationMatrix(dim)
>>> S[0, dim - 1] = 0.99
>>> copula = ot.NormalCopula(S)
>>> distribution = ot.ComposedDistribution(distCol, copula)
>>> sample = distribution.getSample(30)
>>> firstSample = sample[:, :2]
>>> secondSample = sample[:, 2]
>>> selection = [1]
>>> test_result = ot.HypothesisTest.PartialRegression(firstSample, secondSample, selection)
>>> print(test_result)
[class=TestResult name=Unnamed type=Regression binaryQualityMeasure=true p-value threshold=0.05 p-value=0.579638 description=[]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::PartialSpearman
"Test whether two discrete samples are not monotonous.
**Available usages**:
HypothesisTest_PartialSpearman(*firstSample, secondSample, selection*)
HypothesisTest_PartialSpearman(*firstSample, secondSample, selection, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
selection : sequence of integers, maximum integer value :math:`< n`
List of indices selecting which subsets of the first sample will successively
be tested with the second sample through the Spearman test.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Spearman, HypothesisTest_FullSpearman
Notes
-----
The Partial Spearman Test is used to check hypothesis of non monotonous relation
between two samples: *firstSample* of dimension *n* and *secondSample* of
dimension 1. The parameter *selection* enables to select specific subsets of the
*firstSample* to be tested.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.SymbolicFunction(['x'], ['x', 'x^2', 'x^3', 'sin(5*x)'])
>>> testedSample = func(sample)
>>> test_result = ot.HypothesisTest.PartialSpearman(testedSample, sample, [0,3])
>>> print(test_result)
[class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=false p-value threshold=0.05 p-value=0 description=[],class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=true p-value threshold=0.05 p-value=0.57214 description=[]]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::Pearson
"Test whether two discrete samples are independent.
**Available usages**:
HypothesisTest.Pearson(*firstSample, secondSample*)
HypothesisTest.Pearson(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Smirnov, HypothesisTest_Spearman
Notes
-----
The Pearson Test is used to check whether two samples which are assumed to form
a gaussian vector are independent (based on the evaluation of the linear
correlation coefficient).
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distCol = [ot.Normal(), ot.Normal()]
>>> firstSample = ot.Normal().getSample(30)
>>> secondSample = ot.Normal().getSample(30)
>>> test_result = ot.HypothesisTest.Pearson(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=TwoSamplePearson binaryQualityMeasure=true p-value threshold=0.05 p-value=0.984737 description=[]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::Smirnov
"Test whether two samples follows the same distribution.
**Available usages**:
HypothesisTest.Smirnov(*firstSample, secondSample*)
HypothesisTest.Smirnov(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Pearson, HypothesisTest_Spearman
Notes
-----
Smirnov's test is a tool that may be used to compare two samples
:math:`\\\\{x_1, \\\\ldots, x_N\\\\}` and :math:`\\\\{x^{'}_1, \\\\ldots, x^{'}_M\\\\}` (of sizes not
necessarily equal). The goal is to determine whether these two samples come from
the same probability distribution or not. If this is the case, the two samples
should be aggregated in order to increase the robustness of further statistical
analyses.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distCol = [ot.Normal(), ot.Normal()]
>>> firstSample = ot.Normal().getSample(30)
>>> secondSample = ot.Normal().getSample(30)
>>> test_result = ot.HypothesisTest.Smirnov(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=TwoSampleSmirnov binaryQualityMeasure=true p-value threshold=0.05 p-value=0.807963 description=[]
"
// ---------------------------------------------------------------------
%feature("docstring") OT::HypothesisTest::Spearman
"Test whether two discrete samples are not monotonous.
**Available usages**:
HypothesisTest.Spearman(*firstSample, secondSample*)
HypothesisTest.Spearman(*firstSample, secondSample, level*)
Parameters
----------
fisrtSample : 2-d sequence of float
First tested sample, of dimension :math:`n \\\\geq 1`.
secondSample : 2-d sequence of float
Second tested sample, of dimension 1.
level : positive float :math:`< 1`
Threshold p-value of the test (= 1 - first type risk), it must be
:math:`< 1`, equal to 0.95 by default.
Returns
-------
testResult : :class:`~openturns.TestResult`
Structure containing the result of the test.
See Also
--------
HypothesisTest_Smirnov, HypothesisTest_Pearson
Notes
-----
The Spearman Test is used to check whether two scalar samples have a monotonous
relation.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> firstSample = distribution.getSample(30)
>>> func = ot.SymbolicFunction(['x'], ['x^2'])
>>> secondSample = func(firstSample)
>>> test_result = ot.HypothesisTest.Spearman(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=TwoSampleSpearman binaryQualityMeasure=true p-value threshold=0.05 p-value=0.44348 description=[]
"
|