This file is indexed.

/usr/include/openturns/swig/GeneralizedExtremeValue_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
%feature("docstring") OT::GeneralizedExtremeValue
"Generalized ExtremeValue distribution.

Available constructors:
    GeneralizedExtremeValue(*mu=0.0, sigma=1.0, xi=0.0*)

Parameters
----------
mu : float
    Location parameter :math:`\\\\sigma`.
sigma : float, :math:`\\\\sigma > 0`
    Scale parameter :math:`\\\\sigma`.
xi : float
    Shape parameter :math:`\\\\xi`.

Notes
-----
Its cumulative distribution function is defined as:

.. math::

    F_X(x) = \\\\left\\\\{\\\\begin{array}{ll}
               \\\\displaystyle \\\\exp\\\\left\\\\{-\\\\left[1+\\\\xi\\\\left(\\\\dfrac{x-\\\\mu}{\\\\sigma}\\\\right)\\\\right]^{-1/\\\\xi}\\\\right\\\\}
                    & \\\\text{ if } \\\\xi \\\\neq 0 \\\\\\\\
               \\\\displaystyle \\\\exp\\\\left\\\\{-\\\\left(\\\\dfrac{x-\\\\mu}{\\\\sigma}\\\\right)\\\\right\\\\}
                    & \\\\text{ if } \\\\xi = 0
            \\\\end{array}\\\\right.

for :math:`\\\\quad x \\\\in [\\\\mu-\\\\sigma/\\\\xi, +\\\\infty) \\\\text{ if } \\\\xi>0, x \\\\in \\\\Rset \\\\text{ if } \\\\xi=0, x \\\\in (-\\\\infty,\\\\mu-\\\\sigma/\\\\xi] \\\\text{ if } \\\\xi<0.`, with :math:`\\\\sigma > 0` and :math:`\\\\xi \\\\in \\\\Rset`.

:math:`F_X` is zero for :math:`x` less than the lower bound of the support and one for :math:`x` greater than the upper bound of the support.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
    \\\\Expect{X} & = & \\\\left\\\\{\\\\begin{array}{ll}
                     \\\\mu+\\\\sigma\\\\dfrac{\\\\Gamma(1-\\\\xi)-1}{\\\\xi} & \\\\text{ if } \\\\xi < 1, \\\\xi\\\\neq 0 \\\\\\\\
                     \\\\mu + \\\\sigma\\\\gamma & \\\\text{ if } \\\\xi= 0 \\\\\\\\
                     \\\\infty & \\\\text{ if } \\\\xi \\\\geq 1
                     \\\\end{array}
                     \\\\right.\\\\\\\\
        \\\\Var{X} & = &  \\\\left\\\\{\\\\begin{array}{ll}
                     \\\\sigma^2\\\\dfrac{\\\\Gamma(1-2\\\\xi)-\\\\Gamma^2(1-\\\\xi)}{\\\\xi^2} & \\\\text{ if } \\\\xi < 1/2, \\\\xi\\\\neq 0 \\\\\\\\
                     \\\\sigma^2\\\\dfrac{\\\\pi^2}{6} & \\\\text{ if } \\\\xi= 0 \\\\\\\\
                     \\\\infty & \\\\text{ if } \\\\xi \\\\geq 1/2
                     \\\\end{array}
                     \\\\right.
    \\\\end{eqnarray*}

where :math:`\\\\gamma` is Euler's constant.

Link with other distributions: if :math:`X\\\\sim`:class:`~openturns.GeneralizedExtremeValue`:math:`(\\\\mu, \\\\sigma, \\\\xi)`, then :math:`X\\\\sim`:class:`~openturns.Frechet`:math:`(1/\\\\xi, \\\\sigma/\\\\xi, \\\\mu-\\\\sigma/\\\\xi)` if :math:`\\\\xi>0`, :math:`-X\\\\sim`:class:`~openturns.Weibull`:math:`(sigma/\\\\xi, -1/\\\\xi, \\\\sigma/\\\\xi-\\\\mu)` if :math:`\\\\xi<0` (note the minus sign) and :math:`X\\\\sim`:class:`~openturns.Gumbel`:math:`(1/\\\\sigma, \\\\mu)` if :math:`\\\\xi=0`.

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> distribution = ot.GeneralizedExtremeValue(1.0, 2.0, -0.2)

Draw a sample:

>>> sample = distribution.getSample(5)"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::getActualDistribution
"Accessor to the internal distribution.

Returns
-------
distribution : :class:`~openturns.Distribution`
     The actual distribution in charge of the computation (:class:`~openturns.Weibull`, :class:`~openturns.Frechet`, :class:`~openturns.Gumbel`)."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::getMu
"Accessor to the distribution's location parameter :math:`\\\\mu`.

Returns
-------
mu : float
    Location parameter :math:`\\\\mu`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::getSigma
"Accessor to the distribution's scale parameter :math:`\\\\sigma`.

Returns
-------
sigma : float
    Scale parameter :math:`\\\\sigma`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::getXi
"Accessor to the distribution's shape parameter :math:`\\\\xi`.

Returns
-------
xi : float
    Shape parameter :math:`\\\\xi`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::setActualDistribution
"Accessor to the internal distribution.

Parameters
----------
distribution : :class:`~openturns.Distribution`
     The actual distribution in charge of the computation (:class:`~openturns.Weibull`, :class:`~openturns.Frechet`, :class:`~openturns.Gumbel`)."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::setMu
"Accessor to the distribution's location parameter :math:`\\\\mu`.

Parameters
----------
mu : float
    Location parameter :math:`\\\\mu`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::setSigma
"Accessor to the distribution's scale parameter :math:`\\\\sigma`.

Parameters
----------
sigma : float, :math:`\\\\sigma > 0`
    Scale parameter :math:`\\\\sigma`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExtremeValue::setXi
"Accessor to the distribution's shape parameter :math:`\\\\xi`.

Parameters
----------
xi : float, :math:`\\\\xi \\\\in \\\\Rset`
    Shape parameter :math:`\\\\xi`."