This file is indexed.

/usr/include/openturns/swig/GeneralizedExponential_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
%feature("docstring") OT::GeneralizedExponential
"Absolute exponential covariance function.

Available constructors:
    GeneralizedExponential(*spatialDim=1*)

    GeneralizedExponential(*scale, p*)

    GeneralizedExponential(*scale, amplitude, p*)


Parameters
----------
spatialDim : int
    Spatial dimension :math:`n`.
    When not fulfilled, the spatial dimension is equal to the  size of the parameter :math:`\\\\vect{\\\\theta}`.
    By default, equal to 1.
scale : sequence of floats
    Scale coefficient :math:`\\\\vect{\\\\theta}\\\\in \\\\Rset^n`.
    The size of :math:`\\\\vect{\\\\theta}` is the spatial dimension.
amplitude : sequence of positive floats
    Amplitude of the process :math:`\\\\vect{\\\\sigma}\\\\in \\\\Rset^d`.
    Must be of size equal to 1.
    By default, equal to :math:`[1]`.
p : float, :math:`0<p \\\\leq 2`
    Define the exponent of the euclidean norm that is used within the model.

Notes
-----
The *generalized exponential function* is a stationary covariance function whith dimension :math:`d=1`.

We consider the scalar stochastic process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset`, where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`.

The  *generalized exponential* function is defined by:

.. math::
    C(\\\\vect{s}, \\\\vect{t}) = \\\\sigma^2 e^{-\\\\left|\\\\left|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right|\\\\right|_{2}^p}, \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

The correlation function :math:`\\\\rho` writes:

.. math::

    \\\\rho(\\\\vect{s}, \\\\vect{t}) = e^{-\\\\left\\\\| \\\\vect{s}-\\\\vect{t} \\\\right\\\\||_{2}^p}, \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD


See Also
--------
CovarianceModel

Examples
--------
Create a standard generalized exponential covariance function:

>>> import openturns as ot
>>> covModel = ot.GeneralizedExponential(2)
>>> t = [0.1, 0.3]
>>> s = [0.2, 0.4]
>>> print(covModel(s, t))
[[ 0.868123 ]]
>>> tau = [0.1, 0.3]
>>> print(covModel(tau))
[[ 0.728893 ]]

Create a  generalized exponential covariance function specifying the scale vector and p:

>>> covModel2 = ot.GeneralizedExponential([1.5, 2.5], 1.5)
>>> covModel2bis = ot.GeneralizedExponential([1.5] * 2, 1.5)

Create a  generalized exponential covariance function specifying the scale vector, the amplitude and p:

>>> covModel3 = ot.GeneralizedExponential([1.5, 2.5], [3.5], 1.5)"


// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExponential::setP
"P accessor.

Parameters
----------
p : int, :math:`p \\\\geq 1`
    Define the norm that is used within the model."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedExponential::getP
"P accessor.

Returns
-------
p : int, :math:`p \\\\geq 1`
    Define the norm that is used within the model."