This file is indexed.

/usr/include/openturns/swig/GeneralLinearModelResult_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
%feature("docstring") OT::GeneralLinearModelResult
"Generalized linear model result.

Available constructors:
    GeneralLinearModelResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, optimalLogLikelihood*)

    GeneralLinearModelResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCholeskyFactor, covarianceHMatrix, optimalLogLikelihood*)


Parameters
----------
inputSample, outputSample : :class:`~openturns.Sample`
    The samples :math:`(\\\\vect{x}_k)_{1 \\\\leq k \\\\leq N} \\\\in \\\\Rset^d` and :math:`(\\\\vect{y}_k)_{1 \\\\leq k \\\\leq N}\\\\in \\\\Rset^p`.
metaModel : :class:`~openturns.Function`
    The meta model: :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:'metaModel'.
residuals : :class:`~openturns.Point`
    The residual errors.
relativeErrors : :class:`~openturns.Point`
    The relative errors.
basis : collection of :class:`~openturns.Basis`
    Collection of the  :math:`p` functional basis: :math:`(\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]`.
    Its size should be equal to zero if the trend is not estimated.
trendCoefficients : collection of :class:`~openturns.Point`
   The trend coefficients vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`.
covarianceModel : :class:`~openturns.CovarianceModel`
    Covariance function of the normal process with its optimized parameters.
covarianceCholeskyFactor : :class:`~openturns.TriangularMatrix`
    The Cholesky factor :math:`\\\\mat{L}` of :math:`\\\\mat{C}`.
covarianceHMatrix :  :class:`~openturns.HMatrix`
    The *hmat* implementation of :math:`\\\\mat{L}`.
optimalLogLikelihood : float
    The maximum log-likelihood corresponding to the model.

Notes
-----
The structure is usually created by the method *run()* of a :class:`~openturns.GeneralLinearModelAlgorithm`, and obtained thanks to the *getResult()* method.

The meta model :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p` is defined by:

.. math::
    :label: metaModel

    \\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\left(
      \\\\begin{array}{l}
        \\\\mu_1(\\\\vect{x}) \\\\\\\\
        \\\\dots  \\\\\\\\
        \\\\mu_p(\\\\vect{x}) 
       \\\\end{array}
     \\\\right)

where :math:`\\\\mu_l(\\\\vect{x}) = \\\\sum_{j=1}^{n_l} \\\\alpha_j^l \\\\varphi_j^l(\\\\vect{x})` and :math:`\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset` are the trend functions.

If a normalizing transformation *T* has been used, the meta model is built on the inputs :math:`\\\\vect{z}_k = T(\\\\vect{x}_k)` and the meta model writes:

.. math::
    :label: metaModelWithT

    \\\\tilde{\\\\cM}(\\\\vect{x}) = \\\\left(
      \\\\begin{array}{l}
        \\\\mu_1\\\\circ T(\\\\vect{x}) \\\\\\\\
        \\\\dots  \\\\\\\\
        \\\\mu_p\\\\circ T(\\\\vect{x}) 
       \\\\end{array}
     \\\\right)

Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x'],  ['x * sin(x)'])
>>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
>>> sampleY = f(sampleX)

Create the algorithm:

>>> basis = ot.Basis([ot.SymbolicFunction(['x'], ['x']), ot.SymbolicFunction(['x'], ['x^2'])])
>>> covarianceModel = ot.GeneralizedExponential([2.0], 2.0)
>>> algo = ot.GeneralLinearModelAlgorithm(sampleX, sampleY, covarianceModel, basis)
>>> algo.run()

Get the result:

>>> result = algo.getResult()

Get the meta model:

>>> metaModel = result.getMetaModel()
>>> graph = metaModel.draw(0.0, 7.0)
>>> cloud = ot.Cloud(sampleX, sampleY)
>>> cloud.setPointStyle('fcircle')
>>> graph = ot.Graph()
>>> graph.add(cloud)
>>> graph.add(f.draw(0.0, 7.0))
>>> graph.setColors(['black', 'blue', 'red'])
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getTrendCoefficients
"Accessor to the trend coefficients.

Returns
-------
trendCoef : collection of :class:`~openturns.Point`
    The trend coefficients vectors :math:`(\\\\vect{\\\\alpha}^1, \\\\dots, \\\\vect{\\\\alpha}^p)`
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getCovarianceModel
"Accessor to the covariance model.

Returns
-------
covModel : :class:`~openturns.CovarianceModel`
    The covariance model of the Normal process *W*.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getBasisCollection
"Accessor to the collection of basis.

Returns
-------
basisCollection : collection of :class:`~openturns.Basis`
    Collection of the :math:`p` function basis: :math:`(\\\\varphi_j^l: \\\\Rset^d \\\\rightarrow \\\\Rset)_{1 \\\\leq j \\\\leq n_l}` for each :math:`l \\\\in [1, p]`.

Notes
-----
If the trend is not estimated, the collection is empty. 
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getMetaModel
"Accessor to the metamodel.

Returns
-------
metaModel : :class:`~openturns.Function`
    The meta model :math:`\\\\tilde{\\\\cM}: \\\\Rset^d \\\\rightarrow \\\\Rset^p`, defined in :eq:'metaModel'.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getTransformation
"Accessor to the normalizing transformation.

Returns
-------
transformation : :class:`~openturns.Function`
    The transformation *T* that normalizes the input sample.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::setTransformation
"Set accessor to the normalizing transformation.

Parameters
----------
transformation : :class:`~openturns.Function`
    The transformation *T* that normalizes the input sample.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getNoise
"Accessor to the normal process.

Returns
-------
process : :class:`~openturns.Process`
    Returns the normal process :math:`W` with the optimized parameters.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralLinearModelResult::getOptimalLogLikelihood
"Accessor to the optimal log-likelihood of the model.

Returns
-------
optimalLogLikelihood : float
    The value of the log-likelihood corresponding to the model.
"

// ---------------------------------------------------------------------