This file is indexed.

/usr/include/openturns/swig/GaussianProcess_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
%feature("docstring") OT::GaussianProcess
"Gaussian processes.

Available constructor:
    GaussianProcess(*trend, secondOrderModel, mesh*)

    GaussianProcess(*trend, covarianceModel, mesh*)

    GaussianProcess(*secondOrderModel, mesh*)

    GaussianProcess(*covarianceModel, mesh*)

Parameters
----------
trend : :class:`~openturns.TrendTransform`
    Trend function of the process. By default the trend is null.
secondOrderModel : :class:`~openturns.SecondOrderModel`
    Stationary second order model that insures the coherence between the
    covariance function and the spectral density function.
covarianceModel : :class:`~openturns.CovarianceModel`
    Temporal covariance model :math:`C`.
mesh : :class:`~openturns.Mesh`
    Mesh :math:`\\\\cM` over which the domain :math:`\\\\cD` is discretized.

Notes
-----
GaussianProcess creates the processes,
:math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` where :math:`\\\\cD \\\\in \\\\Rset^n`,
from their temporal covariance function
:math:`\\\\cC: \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)`, which writes, in
the stationary case: :math:`\\\\cC^{stat}: \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)`. A
process is *normal*, if all its finite dimensional joint distributions are
normal (See the method :meth:`~openturns.Process.isNormal` for a detailed definition).

The gaussian processes may have a trend: in that case, the normal
process is the sum of the trend function
:math:`f_{trend}: \\\\Rset^n \\\\mapsto \\\\Rset^d` and a zero-mean normal process.

If the zero-mean process is stationary, in order to manipulate the same
normal process through both the temporal and spectral views, it is necessary to
create a second order model *secondOrderModel* that insures the coherence
between the covariance function :math:`C^{stat}` and the spectral density
function :math:`S: \\\\Rset \\\\mapsto \\\\cH^+(d)`. :math:`\\\\cH^+(d) \\\\in \\\\cM_d(\\\\Cset)`
is the set of :math:`d`-dimensional positive definite hermitian matrices.


Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> # Default dimension parameter to evaluate the model
>>> defaultDimension = 1
>>> # Amplitude values
>>> amplitude = [1.0]*defaultDimension
>>> # Scale values
>>> scale = [1.0]*defaultDimension
>>> # Second order model with parameters
>>> myModel = ot.ExponentialCauchy(scale, amplitude)
>>> # Time grid
>>> tmin = 0.0
>>> step = 0.1
>>> n = 11
>>> myTimeGrid = ot.RegularGrid(tmin, step, n)
>>> size = 100
>>> myProcess = ot.GaussianProcess(myModel, myTimeGrid)"

// ---------------------------------------------------------------------

%feature("docstring") OT::GaussianProcess::getCovarianceModel
"Get the covariance model.

Returns
-------
covarianceModel : :class:`~openturns.CovarianceModel`
    Temporal covariance model :math:`C`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GaussianProcess::getTrend
"Get the trend function.

Returns
-------
trend : :class:`~openturns.TrendTransform`
    Trend function."

// ---------------------------------------------------------------------

%feature("docstring") OT::GaussianProcess::isTrendStationary
"Tell if the process is trend stationary or not.

Returns
-------
isTrendStationary : bool
    *True* if the process is trend stationary."

// ---------------------------------------------------------------------

%feature("docstring") OT::GaussianProcess::setSamplingMethod
"Set the used method for getRealization.

Available parameters are :

  * 0 : Cholesky factor sampling (default method)

  * 1 : H-Matrix method (if H-Mat available)

  * 2 : Gibbs method (in dimension 1 only)

Parameters
----------
samplingMethod : int
    Fix a method for sampling.

"