This file is indexed.

/usr/include/openturns/swig/GaussLegendre_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
%feature("docstring") OT::GaussLegendre
"Tensorized integration algorithm of Gauss-Legendre.

Available constructors:
    GaussLegendre(*dimension=1*)

    GaussLegendre(*discretization*)

Parameters
----------
dimension : int, :math:`dimension>0`
    The dimension of the functions to integrate. The default discretization is *GaussLegendre-DefaultMarginalIntegrationPointsNumber* in each dimension, see :class:`~openturns.ResourceMap`.
discretization : sequence of int
    The number of nodes in each dimension. The sequence must be non-empty and must contain only positive values.

Notes
-----
The Gauss-Legendre algorithm enables to approximate the definite integral:

.. math::

    \\\\int_{\\\\vect{a}}^\\\\vect{b} f(\\\\vect{t})\\\\di{\\\\vect{t}}


with :math:`f: \\\\Rset^d \\\\mapsto \\\\Rset^p`, :math:`\\\\vect{a}, \\\\vect{b}\\\\in\\\\Rset^d` using a fixed tensorized Gauss-Legendre approximation:

.. math::

    \\\\int_{\\\\vect{a}}^\\\\vect{b} f(\\\\vect{t})\\\\di{\\\\vect{t}} = \\\\sum_{\\\\vect{n}\\\\in \\\\cN}\\\\left(\\\\prod_{i=1}^d w^{N_i}_{n_i}\\\\right)f(\\\\xi^{N_1}_{n_1},\\\\dots,\\\\xi^{N_d}_{n_d})

where :math:`\\\\xi^{N_i}_{n_i}` is the :math:`n_i`th node of the :math:`N_i`-points Gauss-Legendre 1D integration rule and :math:`w^{N_i}_{n_i}` the associated weight.

Examples
--------
Create a Gauss-Legendre algorithm:

>>> import openturns as ot
>>> algo = ot.GaussLegendre(2)
>>> algo = ot.GaussLegendre([2, 4, 5])"

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussLegendre::integrate
"Evaluation of the integral of :math:`f` on an interval.

Available usages:
    integrate(*f, interval*)

    integrate(*f, interval, xi*)

Parameters
----------
f : :class:`~openturns.Function`, :math:`f: \\\\Rset^d \\\\mapsto \\\\Rset^p`
    The integrand function.
interval : :class:`~openturns.Interval`, :math:`interval \\\\in \\\\Rset^d` 
    The integration domain. 
xi : :class:`~openturns.Sample`
    The integration nodes.

Returns
-------
value : :class:`~openturns.Point`
    Approximation of the integral.


Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x'], ['sin(x)'])
>>> a = -2.5
>>> b = 4.5
>>> algoGL = ot.GaussLegendre([10])
>>> value = algoGL.integrate(f, ot.Interval(a, b))[0]
>>> print(value)
-0.590...
"

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussLegendre::getDiscretization
"Accessor to the discretization of the tensorized rule.

Returns
-------
discretization : :class:`~openturns.Indices`
    The number of integration point in each dimension."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussLegendre::getNodes
"Accessor to the integration nodes.

Returns
-------
nodes : :class:`~openturns.Sample`
    The tensorized Gauss-Legendre integration nodes on :math:`[0,1]^d` where :math:`d>0` is the dimension of the integration algorithm."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussLegendre::getWeights
"Accessor to the integration weights.

Returns
-------
weights : :class:`~openturns.Point`
    The tensorized Gauss-Legendre integration weights on :math:`[0,1]^d` where :math:`d>0` is the dimension of the integration algorithm."