This file is indexed.

/usr/include/openturns/swig/GaussKronrod_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
%feature("docstring") OT::GaussKronrod
"Adaptive integration algorithm of Gauss-Kronrod.

Parameters
----------
maximumSubIntervals : int
    The maximal number of subdivisions of the interval :math:`[a,b]`
maximumError : float
    The maximal error between Gauss and Kronrod approximations.
GKRule : :class:`~openturns.GaussKronrodRule`
    The rule that fixes the number of points used in the Gauss and Kronrod approximations. 

Notes
-----
The Gauss-Kronrod algorithm enables to approximate the definite integral:

.. math::

    \\\\int_{a}^b f(t)\\\\di{t}


with :math:`f: \\\\Rset \\\\mapsto \\\\Rset^p`, using both approximations : Gauss and Kronrod ones defined by:

.. math::

    \\\\int_{-1}^1 f(t)\\\\d{t} \\\\simeq  \\\\omega_0f(0) + \\\\sum_{k=1}^n \\\\omega_k (f(\\\\xi_k)+f(-\\\\xi_k))

and:

.. math::

  \\\\int_{-1}^1 f(t)\\\\di{t}\\\\simeq  \\\\alpha_0f(0) + \\\\sum_{k=1}^{m} \\\\alpha_k (f(\\\\zeta_k)+f(-\\\\zeta_k))

where :math:`\\\\xi_k>0`,  :math:`\\\\zeta_k>0`, :math:`\\\\zeta_{2j}=\\\\xi_j`, :math:`\\\\omega_k>0` and :math:`\\\\alpha_k>0`.



The Gauss-Kronrod algorithm evaluates the integral using the Gauss and the Konrod approximations. If the difference between both approximations is greater that *maximumError*, then the interval :math:`[a,b]` is subdivided into 2 subintervals with the same length. The Gauss-Kronrod algorithm is then applied on both subintervals with the sames rules. The algorithm is iterative until the  difference between both approximations is less that *maximumError*. In that case, the integral on the subinterval is approximated by the Kronrod sum. The subdivision process is limited by *maximumSubIntervals* that imposes the maximum number of subintervals.

The final integral is the sum of the integrals evaluated on the subintervals.

Examples
--------
Create a Gauss-Kronrod algorithm:

>>> import openturns as ot
>>> algo = ot.GaussKronrod(100, 1e-8, ot.GaussKronrodRule(ot.GaussKronrodRule.G11K23))"

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::integrate
"Evaluation of the integral of :math:`f` on an interval.

Available usages:
    integrate(*f, interval*)

    integrate(*f, interval, error*)

    integrate(*f, a, b, error, ai, bi, fi, ei*)

Parameters
----------
f : :class:`~openturns.Function`, :math:`f: \\\\Rset \\\\mapsto \\\\Rset^p`
    The integrand function.
interval : :class:`~openturns.Interval`, :math:`interval \\\\in \\\\Rset` 
    The integration domain. 
error : :class:`~openturns.Point`
    The error estimation of the approximation.
a,b : float 
    Bounds of the integration interval.
ai, bi, ei : :class:`~openturns.Point`; 
    *ai* is the set of lower bounds of the subintervals; 

    *bi* the corresponding upper bounds; 

    *ei* the associated error estimation. 
fi : :class:`~openturns.Sample`
    *fi* is the set of :math:`\\\\int_{ai}^{bi} f(t)\\\\di{t}`

Returns
-------
value : :class:`~openturns.Point`
    Approximation of the integral.


Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x'], ['abs(sin(x))'])
>>> a = -2.5
>>> b = 4.5
>>> algoGK = ot.GaussKronrod(100, 1e-8, ot.GaussKronrodRule(ot.GaussKronrodRule.G11K23))

Use the high-level usage:

>>> value = algoGK.integrate(f, ot.Interval(a, b))[0]
>>> print(value)
4.590...

Use the low-level usage:

>>> error = ot.Point()
>>> ai = ot.Point()
>>> bi = ot.Point()
>>> ei = ot.Point()
>>> fi = ot.Sample()
>>> value2 = algoGK.integrate(f, a, b, error, ai, bi, fi, ei)[0]
>>> print(value2)
4.590..."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::getMaximumError
"Accessor to the maximal error between Gauss and Kronrod approximations.

Returns
-------
maximumErrorvalue : float, positive
    The maximal error between Gauss and Kronrod approximations."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::getMaximumSubIntervals
"Accessor to the maximal  number of subdivisions of :math:`[a,b]`.

Returns
-------
maximumSubIntervals : float, positive
    The maximal number of subdivisions of the interval :math:`[a,b]`."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::getRule
"Accessor to the Gauss-Kronrod rule used in the integration algorithm.

Returns
-------
rule : :class:`~openturns.GaussKronrodRule`
    The Gauss-Kronrod rule used in the integration algorithm."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::setMaximumError
"Set the maximal error between Gauss and Kronrod approximations.

Parameters
----------
maximumErrorvalue : float, positive
    The maximal error between Gauss and Kronrod approximations."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::setMaximumSubIntervals
"Set the maximal  number of subdivisions of :math:`[a,b]`.

Parameters
----------
maximumSubIntervals : float, positive
    The maximal number of subdivisions of the interval :math:`[a,b]`."

// ---------------------------------------------------------------------
%feature("docstring") OT::GaussKronrod::setRule
"Set the Gauss-Kronrod rule used in the integration algorithm.

Parameters
----------
rule : :class:`~openturns.GaussKronrodRule`
    The Gauss-Kronrod rule used in the integration algorithm."