/usr/include/openturns/swig/Function.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | // SWIG file Function.i
%{
#include "openturns/Function.hxx"
#include "openturns/PythonEvaluation.hxx"
%}
%include BaseFuncCollection.i
OTTypedInterfaceObjectHelper(Function)
//OTTypedCollectionInterfaceObjectHelper(Function)
%typemap(in) const FunctionCollection & {
void * ptr = 0;
if (SWIG_IsOK(SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
// From interface class, ok
} else if (SWIG_IsOK(SWIG_ConvertPtr($input, &ptr, SWIG_TypeQuery("OT::Basis *"), 0))) {
// From Implementation*
OT::Basis * p_impl = reinterpret_cast< OT::Basis * >( ptr );
$1 = new OT::Collection<OT::Function>(*p_impl);
} else {
try {
$1 = OT::buildCollectionFromPySequence< OT::Function >( $input );
} catch (OT::InvalidArgumentException &) {
SWIG_exception(SWIG_TypeError, "Object passed as argument is not convertible to a collection of Function");
}
}
}
%typemap(typecheck,precedence=SWIG_TYPECHECK_POINTER) const FunctionCollection & {
$1 = SWIG_IsOK(SWIG_ConvertPtr($input, NULL, $1_descriptor, 0))
|| OT::canConvertCollectionObjectFromPySequence< OT::Function >( $input )
|| SWIG_IsOK(SWIG_ConvertPtr($input, NULL, SWIG_TypeQuery("OT::Basis *"), 0));
}
%apply const FunctionCollection & { const OT::Collection<OT::Function> & };
%template(FunctionCollection) OT::Collection<OT::Function>;
%template(FunctionPersistentCollection) OT::PersistentCollection<OT::Function>;
%include Function_doc.i
%ignore OT::Function::getUseDefaultGradientImplementation;
%ignore OT::Function::setUseDefaultGradientImplementation;
%ignore OT::Function::getUseDefaultHessianImplementation;
%ignore OT::Function::setUseDefaultHessianImplementation;
%include openturns/Function.hxx
namespace OT {
%extend Function {
Function(PyObject * pyObj)
{
void * ptr = 0;
if (SWIG_IsOK(SWIG_ConvertPtr(pyObj, &ptr, SWIG_TypeQuery("OT::Object *"), 0)))
{
throw OT::InvalidArgumentException(HERE) << "Argument should be a pure python object";
}
return new OT::Function(OT::convert<OT::_PyObject_, OT::Function>(pyObj));
}
Function(const Function & other)
{
return new OT::Function( other );
}
}
}
%pythoncode %{
# We have to make sure the submodule is loaded with absolute path
import openturns.typ
class OpenTURNSPythonFunction(object):
"""
Override Function from Python.
Parameters
----------
n : positive int
the input dimension
p : positive int
the output dimension
Notes
-----
You have to overload the function:
_exec(X): single evaluation, X is a sequence of float,
returns a sequence of float
You can also optionally override these functions:
_exec_sample(X): multiple evaluations, X is a 2-d sequence of float,
returns a 2-d sequence of float
_gradient(X): gradient, X is a sequence of float,
returns a 2-d sequence of float
_hessian(X): hessian, X is a sequence of float,
returns a 3-d sequence of float
"""
def __init__(self, n=0, p=0):
try:
self.__n = int(n)
except:
raise TypeError('n argument is not an integer.')
try:
self.__p = int(p)
except:
raise TypeError('p argument is not an integer.')
self.__descIn = list(map(lambda i: 'x' + str(i), range(n)))
self.__descOut = list(map(lambda i: 'y' + str(i), range(p)))
def setInputDescription(self, descIn):
if (len(descIn) != self.__n):
raise ValueError('Input description size does NOT match input dimension')
self.__descIn = descIn
def getInputDescription(self):
return self.__descIn
def setOutputDescription(self, descOut):
if (len(descOut) != self.__p):
raise ValueError('Output description size does NOT match output dimension')
self.__descOut = descOut
def getOutputDescription(self):
return self.__descOut
def getInputDimension(self):
return self.__n
def getOutputDimension(self):
return self.__p
def __str__(self):
return 'OpenTURNSPythonFunction( %s #%d ) -> %s #%d' % (self.__descIn, self.__n, self.__descOut, self.__p)
def __repr__(self):
return self.__str__()
def __call__(self, X):
Y = None
try:
pt = openturns.typ.Point(X)
except TypeError:
try:
ns = openturns.typ.Sample(X)
except TypeError:
raise TypeError('Expect a 1-d or 2-d sequence of float as argument')
else:
Y = self._exec_sample(ns)
else:
Y = self._exec(pt)
return Y
def _exec(self, X):
raise RuntimeError('You must define a method _exec(X) -> Y, where X and Y are 1-d sequence of float')
def _exec_sample(self, X):
res = list()
for point in X:
res.append(self._exec(point))
return res
def _exec_point_on_exec_sample(self, X):
"""Implement exec from exec_sample."""
return self._exec_sample([X])[0]
def _exec_sample_multiprocessing(func, n_cpus):
"""Return a distributed function using multiprocessing.
Parameters
----------
func : Function or calable
A callable python object, usually a function. The function should take
an input vector as argument and return an output vector.
n_cpus : int
Number of CPUs on which to distribute the function calls.
Returns
-------
_exec_sample : Function or callable
The parallelized funtion.
"""
def _exec_sample(X):
from multiprocessing import Pool
p = Pool(processes=n_cpus)
rs = p.map_async(func, X)
p.close()
return rs.get()
return _exec_sample
class PythonFunction(Function):
"""
Override Function from Python.
Parameters
----------
n : positive int
the input dimension
p : positive int
the output dimension
func : a callable python object
called on a single point.
Default is None.
func_sample : a callable python object
called on multiple points at once.
Default is None.
gradient : a callable python objects
returns the gradient as a 2-d sequence of float.
Default is None (uses finite-difference).
hessian : a callable python object
returns the hessian as a 3-d sequence of float.
Default is None (uses finite-difference).
n_cpus : integer
Number of cpus on which func should be distributed using multiprocessing.
If -1, it uses all the cpus available. If 1, it does nothing. If n_cpus
and func_sample are both given as arguments, n_cpus will be ignored and
samples will be handled by func_sample.
Default is None.
Notes
-----
You must provide at least func or func_sample arguments. Notice that if
func_sample is provided, n_cpus is ignored. Note also that if PythonFunction
is distributed (n_cpus > 1), the traceback of a raised exception by a func
call is lost due to the way multiprocessing dispatches and handles func
calls. This can be solved by temporarily deactivating n_cpus during the
development of the wrapper or by manually handling the distribution of the
wrapper with external libraries like joblib that keep track of a raised
exception and shows the traceback to the user.
Examples
--------
>>> import openturns as ot
>>> def a_exec(X):
... Y = [3.*X[0] - X[1]]
... return Y
>>> def a_grad(X):
... dY = [[3.], [-1.]]
... return dY
>>> f = ot.PythonFunction(2, 1, a_exec, gradient=a_grad)
>>> X = [100., 100.]
>>> Y = f(X)
>>> print(Y)
[200]
>>> dY = f.gradient(X)
>>> print(dY)
[[ 3 ]
[ -1 ]]
"""
def __new__(self, n, p, func=None, func_sample=None, gradient=None, hessian=None, n_cpus=None):
if func == None and func_sample == None:
raise RuntimeError('no func nor func_sample given.')
instance = OpenTURNSPythonFunction(n, p)
import collections
if func != None:
if not isinstance(func, collections.Callable):
raise RuntimeError('func argument is not callable.')
instance._exec = func
if func_sample != None:
if not isinstance(func_sample, collections.Callable):
raise RuntimeError('func_sample argument is not callable.')
instance._exec_sample = func_sample
if func == None:
instance._exec = instance._exec_point_on_exec_sample
elif n_cpus != None and n_cpus != 1 and func != None:
if not isinstance(n_cpus, int):
raise RuntimeError('n_cpus is not an integer')
if n_cpus == -1:
import multiprocessing
n_cpus = multiprocessing.cpu_count()
instance._exec_sample = _exec_sample_multiprocessing(func, n_cpus)
if gradient != None:
if not isinstance(gradient, collections.Callable):
raise RuntimeError('gradient argument is not callable.')
instance._gradient = gradient
if hessian != None:
if not isinstance(hessian, collections.Callable):
raise RuntimeError('hessian argument is not callable.')
instance._hessian = hessian
return Function(instance)
# deprecated
class NumericalMathFunction(Function):
def __init__(self, *args):
super(NumericalMathFunction, self).__init__(*args)
openturns.common.Log.Warn('class NumericalMathFunction is deprecated in favor of Function')
%}
|