This file is indexed.

/usr/include/openturns/swig/FFTImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
%define OT_FFT_doc
"Base class for Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT).

Notes
-----
Perform FFT and IFFT with array of ndim=1,2,3
"
%enddef

%feature("docstring") OT::FFTImplementation
OT_FFT_doc
// ---------------------------------------------------------------------


%define OT_FFT_transform_doc
"Perform Fast Fourier Transform (fft).

Parameters
----------
collection : :class:`~openturns.ComplexCollection` or :class:`~openturns.ScalarCollection`, sequence of float
  Data to transform.

Returns
-------
collection : :class:`~openturns.ComplexCollection`
  The data in Fourier domain.

Notes
-----
The Fast Fourier Transform writes as following:

.. math::

    {\\\\rm y_k} = \\\\sum_{n=0}^{N-1} x_n exp(-2 i \\\\pi \\\\frac{kn}{N})

where :math:`x` denotes the data to be transformed, of size :math:`N`.


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> result = fft.transform(ot.Normal(8).getRealization())
"
%enddef

%feature("docstring") OT::FFTImplementation::transform
OT_FFT_transform_doc

// ---------------------------------------------------------------------

%define OT_FFT_inverseTransform_doc
"Perform Inverse Fast Fourier Transform (fft).

Parameters
----------
collection : :class:`~openturns.ComplexCollection` or :class:`~openturns.ScalarCollection`, sequence of float
  Data to transform.

Returns
-------
collection : :class:`~openturns.ComplexCollection`
    The transformed data.

Notes
-----
The Inverse Fast Fourier Transform writes as following:

.. math::

    {\\\\rm y_k} = \\\\sum_{n=0}^{N-1} \\\\frac{1}{N} x_n exp(2 i \\\\pi \\\\frac{kn}{N})

where :math:`x` denotes the data, of size :math:`N`, to be transformed.


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> collection = ot.ComplexCollection([1+1j,2-0.3j,5-.3j,6+1j,9+8j,16+8j,0.3])
>>> result = fft.inverseTransform(collection)
"
%enddef

%feature("docstring") OT::FFTImplementation::inverseTransform
OT_FFT_inverseTransform_doc
// ---------------------------------------------------------------------

%define OT_FFT_transform2D_doc
"Perform 2D FFT.

Parameters
----------
matrix : :class:`~openturns.ComplexMatrix`, :class:`~openturns.Matrix`, 2-d sequence of float
  Data to transform.

Returns
-------
result : :class:`~openturns.ComplexMatrix`
  The data in fourier domain.

Notes
-----
The 2D Fast Fourier Transform writes as following:

.. math::

    {\\\\rm Z_{k,l}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1} X_{m,n} exp(-2 i \\\\pi \\\\frac{km}{M}) exp(-2 i \\\\pi \\\\frac{ln}{N})

where :math:`X` denotes the data to be transformed with shape (:math:`M`,:math:`N`)


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.Normal(8).getSample(16)
>>> result = fft.transform2D(x)
"
%enddef

%feature("docstring") OT::FFTImplementation::transform2D
OT_FFT_transform2D_doc

// ---------------------------------------------------------------------

%define OT_FFT_inverseTransform2D_doc
"Perform 2D IFFT.

Parameters
----------
matrix : :class:`~openturns.ComplexMatrix`, :class:`~openturns.Matrix`, 2-d sequence of float
  Data to transform.

Returns
-------
result : :class:`~openturns.ComplexMatrix`
  The data transformed.

Notes
-----
The 2D Fast Inverse Fourier Transform writes as following:

.. math::

    {\\\\rm Y_{k,l}} = \\\\frac{1}{M\\\\times N}\\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1} Z_{m,n} exp(2 i \\\\pi \\\\frac{km}{M}) exp(2 i \\\\pi \\\\frac{ln}{N})

where :math:`Z` denotes the data to be transformed with shape (:math:`M`,:math:`N`)


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.Normal(8).getSample(16)
>>> result = fft.inverseTransform2D(x)
"
%enddef

%feature("docstring") OT::FFTImplementation::inverseTransform2D
OT_FFT_inverseTransform2D_doc

// ---------------------------------------------------------------------

%define OT_FFT_transform3D_doc
"Perform 3D FFT.

Parameters
----------
tensor : :class:`~openturns.ComplexTensor` or :class:`~openturns.Tensor` or 3d array
  Data to transform.

Returns
-------
result : :class:`~openturns.ComplexTensor`
  The data in fourier domain.

Notes
-----
The 3D Fast Fourier Transform writes as following:

.. math::

    {\\\\rm Z_{k,l,r}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1}\\\\sum_{p=0}^{P-1} X_{m,n,p} exp(-2 i \\\\pi \\\\frac{km}{M}) exp(-2 i \\\\pi \\\\frac{ln}{N}) exp(-2 i \\\\pi \\\\frac{rp}{P})

where :math:`X` denotes the data to be transformed with shape (:math:`M`,:math:`N`, :math:`P`)


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.ComplexTensor(8,8,2)
>>> y = ot.Normal(8).getSample(8)
>>> x.setSheet(0,fft.transform2D(y))
>>> z = ot.Normal(8).getSample(8)
>>> x.setSheet(1,fft.transform2D(z))
>>> result = fft.transform3D(x)
"
%enddef

%feature("docstring") OT::FFTImplementation::transform3D
OT_FFT_transform3D_doc

// ---------------------------------------------------------------------

%define OT_FFT_inverseTransform3D_doc
"Perform 3D IFFT.

Parameters
----------
tensor : :class:`~openturns.ComplexTensor` or :class:`~openturns.Tensor` or 3d array
  The data to be transformed.

Returns
-------
result : :class:`~openturns.ComplexTensor`
  The transformed data.

Notes
-----
The 3D Inverse Fast Fourier Transform writes as following:

.. math::

    {\\\\rm Y_{k,l,r}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1}\\\\sum_{p=0}^{P-1} \\\\frac{1}{M\\\\times N \\\\times P} Z_{m,n,p} exp(2 i \\\\pi \\\\frac{km}{M}) exp(2 i \\\\pi \\\\frac{ln}{N}) exp(2 i \\\\pi \\\\frac{rp}{P})

where :math:`Z` denotes the data to be transformed with shape (:math:`M`, :math:`N`, :math:`P`)


Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.ComplexTensor(8,8,2)
>>> y = ot.Normal(8).getSample(8)
>>> x.setSheet(0, fft.transform2D(y))
>>> z = ot.Normal(8).getSample(8)
>>> x.setSheet(1, fft.transform2D(z))
>>> result = fft.inverseTransform3D(x)
"
%enddef

%feature("docstring") OT::FFTImplementation::inverseTransform3D
OT_FFT_inverseTransform3D_doc