/usr/include/openturns/swig/FFTImplementation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | %define OT_FFT_doc
"Base class for Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT).
Notes
-----
Perform FFT and IFFT with array of ndim=1,2,3
"
%enddef
%feature("docstring") OT::FFTImplementation
OT_FFT_doc
// ---------------------------------------------------------------------
%define OT_FFT_transform_doc
"Perform Fast Fourier Transform (fft).
Parameters
----------
collection : :class:`~openturns.ComplexCollection` or :class:`~openturns.ScalarCollection`, sequence of float
Data to transform.
Returns
-------
collection : :class:`~openturns.ComplexCollection`
The data in Fourier domain.
Notes
-----
The Fast Fourier Transform writes as following:
.. math::
{\\\\rm y_k} = \\\\sum_{n=0}^{N-1} x_n exp(-2 i \\\\pi \\\\frac{kn}{N})
where :math:`x` denotes the data to be transformed, of size :math:`N`.
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> result = fft.transform(ot.Normal(8).getRealization())
"
%enddef
%feature("docstring") OT::FFTImplementation::transform
OT_FFT_transform_doc
// ---------------------------------------------------------------------
%define OT_FFT_inverseTransform_doc
"Perform Inverse Fast Fourier Transform (fft).
Parameters
----------
collection : :class:`~openturns.ComplexCollection` or :class:`~openturns.ScalarCollection`, sequence of float
Data to transform.
Returns
-------
collection : :class:`~openturns.ComplexCollection`
The transformed data.
Notes
-----
The Inverse Fast Fourier Transform writes as following:
.. math::
{\\\\rm y_k} = \\\\sum_{n=0}^{N-1} \\\\frac{1}{N} x_n exp(2 i \\\\pi \\\\frac{kn}{N})
where :math:`x` denotes the data, of size :math:`N`, to be transformed.
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> collection = ot.ComplexCollection([1+1j,2-0.3j,5-.3j,6+1j,9+8j,16+8j,0.3])
>>> result = fft.inverseTransform(collection)
"
%enddef
%feature("docstring") OT::FFTImplementation::inverseTransform
OT_FFT_inverseTransform_doc
// ---------------------------------------------------------------------
%define OT_FFT_transform2D_doc
"Perform 2D FFT.
Parameters
----------
matrix : :class:`~openturns.ComplexMatrix`, :class:`~openturns.Matrix`, 2-d sequence of float
Data to transform.
Returns
-------
result : :class:`~openturns.ComplexMatrix`
The data in fourier domain.
Notes
-----
The 2D Fast Fourier Transform writes as following:
.. math::
{\\\\rm Z_{k,l}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1} X_{m,n} exp(-2 i \\\\pi \\\\frac{km}{M}) exp(-2 i \\\\pi \\\\frac{ln}{N})
where :math:`X` denotes the data to be transformed with shape (:math:`M`,:math:`N`)
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.Normal(8).getSample(16)
>>> result = fft.transform2D(x)
"
%enddef
%feature("docstring") OT::FFTImplementation::transform2D
OT_FFT_transform2D_doc
// ---------------------------------------------------------------------
%define OT_FFT_inverseTransform2D_doc
"Perform 2D IFFT.
Parameters
----------
matrix : :class:`~openturns.ComplexMatrix`, :class:`~openturns.Matrix`, 2-d sequence of float
Data to transform.
Returns
-------
result : :class:`~openturns.ComplexMatrix`
The data transformed.
Notes
-----
The 2D Fast Inverse Fourier Transform writes as following:
.. math::
{\\\\rm Y_{k,l}} = \\\\frac{1}{M\\\\times N}\\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1} Z_{m,n} exp(2 i \\\\pi \\\\frac{km}{M}) exp(2 i \\\\pi \\\\frac{ln}{N})
where :math:`Z` denotes the data to be transformed with shape (:math:`M`,:math:`N`)
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.Normal(8).getSample(16)
>>> result = fft.inverseTransform2D(x)
"
%enddef
%feature("docstring") OT::FFTImplementation::inverseTransform2D
OT_FFT_inverseTransform2D_doc
// ---------------------------------------------------------------------
%define OT_FFT_transform3D_doc
"Perform 3D FFT.
Parameters
----------
tensor : :class:`~openturns.ComplexTensor` or :class:`~openturns.Tensor` or 3d array
Data to transform.
Returns
-------
result : :class:`~openturns.ComplexTensor`
The data in fourier domain.
Notes
-----
The 3D Fast Fourier Transform writes as following:
.. math::
{\\\\rm Z_{k,l,r}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1}\\\\sum_{p=0}^{P-1} X_{m,n,p} exp(-2 i \\\\pi \\\\frac{km}{M}) exp(-2 i \\\\pi \\\\frac{ln}{N}) exp(-2 i \\\\pi \\\\frac{rp}{P})
where :math:`X` denotes the data to be transformed with shape (:math:`M`,:math:`N`, :math:`P`)
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.ComplexTensor(8,8,2)
>>> y = ot.Normal(8).getSample(8)
>>> x.setSheet(0,fft.transform2D(y))
>>> z = ot.Normal(8).getSample(8)
>>> x.setSheet(1,fft.transform2D(z))
>>> result = fft.transform3D(x)
"
%enddef
%feature("docstring") OT::FFTImplementation::transform3D
OT_FFT_transform3D_doc
// ---------------------------------------------------------------------
%define OT_FFT_inverseTransform3D_doc
"Perform 3D IFFT.
Parameters
----------
tensor : :class:`~openturns.ComplexTensor` or :class:`~openturns.Tensor` or 3d array
The data to be transformed.
Returns
-------
result : :class:`~openturns.ComplexTensor`
The transformed data.
Notes
-----
The 3D Inverse Fast Fourier Transform writes as following:
.. math::
{\\\\rm Y_{k,l,r}} = \\\\sum_{m=0}^{M-1}\\\\sum_{n=0}^{N-1}\\\\sum_{p=0}^{P-1} \\\\frac{1}{M\\\\times N \\\\times P} Z_{m,n,p} exp(2 i \\\\pi \\\\frac{km}{M}) exp(2 i \\\\pi \\\\frac{ln}{N}) exp(2 i \\\\pi \\\\frac{rp}{P})
where :math:`Z` denotes the data to be transformed with shape (:math:`M`, :math:`N`, :math:`P`)
Examples
--------
>>> import openturns as ot
>>> fft = ot.FFT()
>>> x = ot.ComplexTensor(8,8,2)
>>> y = ot.Normal(8).getSample(8)
>>> x.setSheet(0, fft.transform2D(y))
>>> z = ot.Normal(8).getSample(8)
>>> x.setSheet(1, fft.transform2D(z))
>>> result = fft.inverseTransform3D(x)
"
%enddef
%feature("docstring") OT::FFTImplementation::inverseTransform3D
OT_FFT_inverseTransform3D_doc
|